首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simple Transformation Techniques for Improved Non-parametric Regression   总被引:2,自引:0,他引:2  
We propose and investigate two new methods for achieving less bias in non- parametric regression. We show that the new methods have bias of order h 4, where h is a smoothing parameter, in contrast to the basic kernel estimator's order h 2. The methods are conceptually very simple. At the first stage, perform an ordinary non-parametric regression on { xi , Yi } to obtain m^ ( xi ) (we use local linear fitting). In the first method, at the second stage, repeat the non-parametric regression but on the transformed dataset { m^ ( xi , Yi )}, taking the estimator at x to be this second stage estimator at m^ ( x ). In the second, and more appealing, method, again perform non-parametric regression on { m^ ( xi , Yi )}, but this time make the kernel weights depend on the original x scale rather than using the m^ ( x ) scale. We concentrate more of our effort in this paper on the latter because of its advantages over the former. Our emphasis is largely theoretical, but we also show that the latter method has practical potential through some simulated examples.  相似文献   

2.
There are several ways to handle within‐subject correlations with a longitudinal discrete outcome, such as mortality. The most frequently used models are either marginal or random‐effects types. This paper deals with a random‐effects‐based approach. We propose a nonparametric regression model having time‐varying mixed effects for longitudinal cancer mortality data. The time‐varying mixed effects in the proposed model are estimated by combining kernel‐smoothing techniques and a growth‐curve model. As an illustration based on real data, we apply the proposed method to a set of prefecture‐specific data on mortality from large‐bowel cancer in Japan.  相似文献   

3.
DO NOT WEIGHT FOR HETEROSCEDASTICITY IN NONPARAMETRIC REGRESSION   总被引:1,自引:0,他引:1  
The potential role of weighting in kernel regression is examined. The concept that weighting has something to do with heteroscedastic errors is shown to be false. However, weighting does affect bias, and ways in which this might be exploited are indicated.  相似文献   

4.
5.
Exponential smoothing is the most common model-free means of forecasting a future realization of a time series. It requires the specification of a smoothing factor which is usually chosen from the data to minimize the average squared residual of previous one-step-ahead forecasts. In this paper we show that exponential smoothing can be put into a nonparametric regression framework and gain some interesting insights into its performance through this interpretation. We also use theoretical developments from the kernel regression field to derive, for the first time, asymptotic properties of exponential smoothing forecasters.  相似文献   

6.
Time series smoothers estimate the level of a time series at time t as its conditional expectation given present, past and future observations, with the smoothed value depending on the estimated time series model. Alternatively, local polynomial regressions on time can be used to estimate the level, with the implied smoothed value depending on the weight function and the bandwidth in the local linear least squares fit. In this article we compare the two smoothing approaches and describe their similarities. Through simulations, we assess the increase in the mean square error that results when approximating the estimated optimal time series smoother with the local regression estimate of the level.  相似文献   

7.
For a nonparametric regression model y = m(x)+e with n independent observations, we analyze a robust method of finding the root of m(x) based on an M-estimation first discussed by Härdle & Gasser (1984). It is shown here that the robustness properties (minimaxity and breakdown function) of such an estimate are quite analogous to those of an M -estimator in the simple location model, but the rate of convergence is somewhat limited due to the nonparametric nature of the problem.  相似文献   

8.
Estimators of location and size of jumps or discontinuities in a regression function and/or its derivatives are proposed. The estimators are based on the analysis of residuals obtained from the locally weighted least squares regression. The proposed estimators adapt to both fixed and random designs. The asymptotic properties of the estimators are investigated. The method is illustrated through simulation studies.  相似文献   

9.
In the fixed design regression model, additional weights are considered for the Nad a ray a-Watson and Gasser-Miiller kernel estimators. We study their asymptotic behavior and the relationships between new and classical estimators. For a simple family of weights, and considering the AIMSEAS global loss criterion, we show some possible theoretical advantages. An empirical study illustrates the performance of the weighted kernel estimators in theoretical ideal situations and in simulated data sets. Also some results concerning the use of weights for local polynomial estimators are given.  相似文献   

10.
There have been a number of procedures used to analyze non-monotonic binary data to predict the probability of response. Some classical procedures are the Up and Down strategy, the Robbins–Monro procedure, and other sequential optimization designs. Recently, nonparametric procedures such as kernel regression and local linear regression (llogr) have been applied to this type of data. It is a well known fact that kernel regression has problems fitting the data near the boundaries and a drawback with local linear regression is that it may be “too linear” when fitting data from a curvilinear function. The procedure introduced in this paper is called local logistic regression, which fits a logistic regression function at each of the data points. An example is given using United States Army projectile data that supports the use of local logistic regression when analyzing non-monotonic binary data for certain response curves. Properties of local logistic regression will be presented along with simulation results that indicate some of the strengths of the procedure.  相似文献   

11.
In this paper we present a consistent specification test of a parametric regression function against a general nonparametric alternative. The proposed test is based on wavelet estimation and it is shown to have similar rates of convergence to the more commonly used kernel based tests. Monte Carlo simulations show that this test statistic has adequate size and high power and that it compares favorably with its kernel based counterparts in small samples.  相似文献   

12.
Consider a regression model where the regression function is the sum of a linear and a nonparametric component. Assuming that the errors of the model follow a stationary strong mixing process with mean zero, the problem of bandwidth selection for a kernel estimator of the nonparametric component is addressed here. We obtain an asymptotic expression for an optimal band-width and we propose to use a plug-in methodology in order to estimate this bandwidth through preliminary estimates of the unknown quantities. Asymptotic optimality for the plug-in bandwidth is established.  相似文献   

13.
Abstract.  It is well known that major strength of non-parametric regression function estimation breaks down when correlated errors exist in the data. Positively (negatively) correlated errors tend to produce undersmoothing (oversmoothing). Several remedies have been proposed in the context of bandwidth selection problem, but they are hard to implement without prior knowledge of error correlations. In this paper we propose a simple estimator of error correlation which is ready to implement and reports a reasonably good performance.  相似文献   

14.
We introduce a class of models for longitudinal data by extending the generalized estimating equations approach of Liang and Zeger (1986) to incorporate the flexibility of nonparametric smoothing. The algorithm provides a unified estimation procedure for marginal distributions from the exponential family. We propose pointwise standard-error bands and approximate likelihood-ratio and score tests for inference. The algorithm is formally derived by using the penalized quasilikelihood framework. Convergence of the estimating equations and consistency of the resulting solutions are discussed. We illustrate the algorithm with data on the population dynamics of Colorado potato beetles on potato plants.  相似文献   

15.
16.
In this note we discuss two-step kernel estimation of varying coefficient regression models that have a common smoothing variable. The method allows one to use different bandwidths for different coefficient functions. We consider local polynomial fitting and present explicit formulas for the asymptotic biases and variances of the estimators.  相似文献   

17.
RATES OF CONVERGENCE IN SEMI-PARAMETRIC MODELLING OF LONGITUDINAL DATA   总被引:2,自引:0,他引:2  
We consider the problem of semi-parametric regression modelling when the data consist of a collection of short time series for which measurements within series are correlated. The objective is to estimate a regression function of the form E[Y(t) | x] =x'ß+μ(t), where μ(.) is an arbitrary, smooth function of time t, and x is a vector of explanatory variables which may or may not vary with t. For the non-parametric part of the estimation we use a kernel estimator with fixed bandwidth h. When h is chosen without reference to the data we give exact expressions for the bias and variance of the estimators for β and μ(t) and an asymptotic analysis of the case in which the number of series tends to infinity whilst the number of measurements per series is held fixed. We also report the results of a small-scale simulation study to indicate the extent to which the theoretical results continue to hold when h is chosen by a data-based cross-validation method.  相似文献   

18.
In this paper a semi-parametric approach is developed to model non-linear relationships in time series data using polynomial splines. Polynomial splines require very little assumption about the functional form of the underlying relationship, so they are very flexible and can be used to model highly non-linear relationships. Polynomial splines are also computationally very efficient. The serial correlation in the data is accounted for by modelling the noise as an autoregressive integrated moving average (ARIMA) process, by doing so, the efficiency in nonparametric estimation is improved and correct inferences can be obtained. The explicit structure of the ARIMA model allows the correlation information to be used to improve forecasting performance. An algorithm is developed to automatically select and estimate the polynomial spline model and the ARIMA model through backfitting. This method is applied on a real-life data set to forecast hourly electricity usage. The non-linear effect of temperature on hourly electricity usage is allowed to be different at different hours of the day and days of the week. The forecasting performance of the developed method is evaluated in post-sample forecasting and compared with several well-accepted models. The results show the performance of the proposed model is comparable with a long short-term memory deep learning model.  相似文献   

19.
The author considers density estimation from contaminated data where the measurement errors come from two very different sources. A first error, of Berkson type, is incurred before the experiment: the variable X of interest is unobservable and only a surrogate can be measured. A second error, of classical type, is incurred after the experiment: the surrogate can only be observed with measurement error. The author develops two nonparametric estimators of the density of X, valid whenever Berkson, classical or a mixture of both errors are present. Rates of convergence of the estimators are derived and a fully data‐driven procedure is proposed. Finite sample performance is investigated via simulations and on a real data example.  相似文献   

20.
M. C. Jones 《Statistics》2013,47(1-2):65-71
Two types of non-global bandwidth, which may be called local and variable, have been defined in attempts to improve the performance of kernel density estimators. In nonparametric regression, local linear fitting has become a method of much popularity. It is natural, therefore, to consider the use of non-global bandwidths in the local linear context, and indeed local bandwidths are often used. In this paper, it is observed that a natural proposal in the literature for combining variable bandwidths with local linear fitting fails in the sense that the resulting mean squared error properties are those normally associated with local rather than variable bandwidths. We are able to understand why this happens in terms of weightings that are involved. We also attempt to investigate how the bias reduction expected of well-chosen variable bandwidths might be achieved in conjunction with local linear fitting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号