首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we study the robustness properties of several procedures for the joint estimation of shape and scale in a generalized Pareto model. The estimators that we primarily focus upon, most bias robust estimator (MBRE) and optimal MSE-robust estimator (OMSE), are one-step estimators distinguished as optimally robust in the shrinking neighbourhood setting; that is, they minimize the maximal bias, respectively, on such a specific neighbourhood, the maximal mean squared error (MSE). For their initialization, we propose a particular location–dispersion estimator, MedkMAD, which matches the population median and kMAD (an asymmetric variant of the median of absolute deviations) against the empirical counterparts. These optimally robust estimators are compared to the maximum-likelihood, skipped maximum-likelihood, Cramér–von-Mises minimum distance, method-of-medians, and Pickands estimators. To quantify their deviation from robust optimality, for each of these suboptimal estimators, we determine the finite-sample breakdown point and the influence function, as well as the statistical accuracy measured by asymptotic bias, variance, and MSE – all evaluated uniformly on shrinking neighbourhoods. These asymptotic findings are complemented by an extensive simulation study to assess the finite-sample behaviour of the considered procedures. The applicability of the procedures and their stability against outliers are illustrated for the Danish fire insurance data set from the package evir.  相似文献   

2.
This paper is mainly concerned with minimax estimation in the general linear regression model y=Xβ+εy=Xβ+ε under ellipsoidal restrictions on the parameter space and quadratic loss function. We confine ourselves to estimators that are linear in the response vector y  . The minimax estimators of the regression coefficient ββ are derived under homogeneous condition and heterogeneous condition, respectively. Furthermore, these obtained estimators are the ridge-type estimators and mean dispersion error (MDE) superior to the best linear unbiased estimator b=(XW-1X)-1XW-1yb=(XW-1X)-1XW-1y under some conditions.  相似文献   

3.
In this paper, we deal with bias reduction techniques for heavy tails, trying to improve mainly upon the performance of classical high quantile estimators. High quantiles depend strongly on the tail index γγ, for which new classes of reduced-bias estimators have recently been introduced, where the second-order parameters in the bias are estimated at a level k1k1 of a larger order than the level k at which the tail index is estimated. Doing this, it was seen that the asymptotic variance of the new estimators could be kept equal to the one of the popular Hill estimators. In a similar way, we now introduce new classes of tail index and associated high quantile estimators, with an asymptotic mean squared error smaller than that of the classical ones for all k in a large class of heavy-tailed models. We derive their asymptotic distributional properties and compare them with those of alternative estimators. Next to that, an illustration of the finite sample behavior of the estimators is also provided through a Monte Carlo simulation study and the application to a set of real data in the field of insurance.  相似文献   

4.
5.
For a loss distribution belonging to a location–scale family, Fμ,σFμ,σ, the risk measures, Value-at-Risk and Expected Shortfall are linear functions of the parameters: μ+τσμ+τσ where ττ is the corresponding risk measure of the mean-zero and unit-variance member of the family. For each risk measure, we consider a natural estimator by replacing the unknown parameters μμ and σσ by the sample mean and (bias corrected) sample standard deviation, respectively. The large-sample parametric confidence intervals for the risk measures are derived, relying on the asymptotic joint distribution of the sample mean and sample standard deviation. Simulation studies with the Normal, Laplace and Gumbel families illustrate that the derived asymptotic confidence intervals for Value-at-Risk and Expected Shortfall outperform those of Bahadur (1966) and Brazauskas et al. (2008), respectively. The method can also be effectively applied to Log-location-scale families whose supports are positive reals; an illustrative example is given in the area of financial credit risk.  相似文献   

6.
7.
We consider a functional linear model where the explicative variables are known stochastic processes taking values in a Hilbert space, the main example is given by Gaussian processes in L2([0,1])L2([0,1]). We propose estimators of the Sobol indices in this functional linear model. Our estimators are based on U-statistics. We prove the asymptotic normality and the efficiency of our estimators and we compare them from a theoretical and practical point of view with classical estimators of Sobol indices.  相似文献   

8.
9.
10.
This paper studies the partially time-varying coefficient models where some covariates are measured with additive errors. In order to overcome the bias of the usual profile least squares estimation when measurement errors are ignored, we propose a modified profile least squares estimator of the regression parameter and construct estimators of the nonlinear coefficient function and error variance. The proposed three estimators are proved to be asymptotically normal under mild conditions. In addition, we introduce the profile likelihood ratio test and then demonstrate that it follows an asymptotically χ2χ2 distribution under the null hypothesis. Finite sample behavior of the estimators is investigated via simulations too.  相似文献   

11.
Box and Meyer [1986. Dispersion effects from fractional designs. Technometrics 28(1), 19–27] were the first to consider identifying both location and dispersion effects from unreplicated two-level fractional factorial designs. Since the publication of their paper a number of different procedures (both iterative and non-iterative) have been proposed for estimating the location and dispersion effects. An overview and a critical analysis of most of these procedures is given by Brenneman and Nair [2001. Methods for identifying dispersion effects in unreplicated factorial experiments: a critical analysis and proposed strategies. Technometrics 43(4), 388–405]. Under a linear structure for the dispersion effects, non-iterative estimation methods for the dispersion effects were proposed by Brenneman and Nair [2001. Methods for identifying dispersion effects in unreplicated factorial experiments: a critical analysis and proposed strategies. Technometrics 43(4), 388–405], Liao and Iyer [2000. Optimal 2n-p2n-p fractional factorial designs for dispersion effects under a location-dispersion model. Comm. Statist. Theory Methods 29(4), 823–835] and Wiklander [1998. A comparison of two estimators of dispersion effects. Comm. Statist. Theory Methods 27(4), 905–923] (see also Wiklander and Holm [2003. Dispersion effects in unreplicated factorial designs. Appl. Stochastic. Models Bus. Ind. 19(1), 13–30]). We prove that for two-level factorial designs the proposed estimators are different representations of a single estimator. The proof uses the framework of Seely [1970a. Linear spaces and unbiased estimation. Ann. Math. Statist. 41, 1725–1734], in which quadratic estimators are expressed as inner products of symmetric matrices.  相似文献   

12.
The paper develops constrained Bayes and empirical Bayes estimators in the random effects ANOVA model under balanced loss functions. In the balanced normal–normal model, estimators of the Bayes risks of the constrained Bayes and constrained empirical Bayes estimators are provided which are correct asymptotically up to O(m-1)O(m-1), that is the remainder term is o(m-1)o(m-1), mm denoting the number of strata.  相似文献   

13.
14.
15.
We reconsider and extend the method of designing nonlinear experiments presented in Pázman and Pronzato (J. Statist. Plann. Inference 33 (1992) 385). The approach is based on the probability density of the LS estimators, and takes into account the boundary of the parameter space. The idea is to express the elements of the mean square error matrix (MSE) of the LS estimators as integrals of the density, express optimality criteria as functions of MSE, and minimize them by stochastic optimization. In the present paper we include prior knowledge about some parameters, we derive improved approximations of the density of estimators, and we consider not only linear optimality criteria like generalized A-optimality, but also D- and Ls-optimality criteria with an integer s. Of basic importance is the use of an accelerated method of stochastic optimization (MSO). This together with the important progress in computing allowed us to elaborate a realistic algorithm. Its performance is demonstrated by the search of a generalized D-optimum design in the 4-parameter growth curve model of microbiological experiments presented by Baranyi and Roberts (Internat. J. Food Microbiol. 23 (1994) 277; 26 (1995) 199).  相似文献   

16.
We consider the problem of estimating the mean θθ of an Np(θ,Ip)Np(θ,Ip) distribution with squared error loss ∥δ−θ∥2δθ2 and under the constraint ∥θ∥≤mθm, for some constant m>0m>0. Using Stein's identity to obtain unbiased estimates of risk, Karlin's sign change arguments, and conditional risk analysis, we compare the risk performance of truncated linear estimators with that of the maximum likelihood estimator δmleδmle. We obtain for fixed (m,p)(m,p) sufficient conditions for dominance. An asymptotic framework is developed, where we demonstrate that the truncated linear minimax estimator dominates δmleδmle, and where we obtain simple and accurate measures of relative improvement in risk. Numerical evaluations illustrate the effectiveness of the asymptotic framework for approximating the risks for moderate or large values of p.  相似文献   

17.
In this paper, we consider the prediction problem in multiple linear regression model in which the number of predictor variables, p, is extremely large compared to the number of available observations, n  . The least-squares predictor based on a generalized inverse is not efficient. We propose six empirical Bayes estimators of the regression parameters. Three of them are shown to have uniformly lower prediction error than the least-squares predictors when the vector of regressor variables are assumed to be random with mean vector zero and the covariance matrix (1/n)XtX(1/n)XtX where Xt=(x1,…,xn)Xt=(x1,,xn) is the p×np×n matrix of observations on the regressor vector centered from their sample means. For other estimators, we use simulation to show its superiority over the least-squares predictor.  相似文献   

18.
A robust test for the one-way ANOVA model under heteroscedasticity is developed in this paper. The data are assumed to be symmetrically distributed, apart from some outliers, although the assumption of normality may be violated. The test statistic to be used is a weighted sum of squares similar to the Welch [1951. On the comparison of several mean values: an alternative approach. Biometrika 38, 330-336.] test statistic, but any of a variety of robust measures of location and scale for the populations of interest may be used instead of the usual mean and standard deviation. Under the commonly occurring condition that the robust measures of location and scale are asymptotically normal, we derive approximations to the distribution of the test statistic under the null hypothesis and to its distribution under alternative hypotheses. An expression for relative efficiency is derived, thus allowing comparison of the efficiency of the test as a function of the choice of the location and scale estimators used in the test statistic. As an illustration of the theory presented here, we apply it to three commonly used robust location–scale estimator pairs: the trimmed mean with the Winsorized standard deviation; the Huber Proposal 2 estimator pair; and the Hampel robust location estimator with the median absolute deviation.  相似文献   

19.
In this paper we study a class of M  -estimators in a regression model under bivariate random censoring and provide a set of sufficient conditions that ensure asymptotic n1/2-convergencen1/2-convergence. The cornerstone of our approach is a new estimator of the joint distribution function of the censored lifetimes. A copula approach is used to modelize the dependence structure between the bivariate censoring times. The resulting estimators present the advantage of being easily computable. A simulation study enlighten the finite sample behavior of this technique.  相似文献   

20.
Autoregressive models with infinite variance are of great importance in modeling heavy-tailed time series and have been well studied. In this paper, we propose a penalized method to conduct model selection for autoregressive models with innovations having Pareto-like distributions with index α∈(0,2)α(0,2). By combining the least absolute deviation loss function and the adaptive lasso penalty, the proposed method is able to consistently identify the true model and at the same time produce efficient estimators with a convergence rate of n−1/αn1/α. In addition, our approach provides a unified way to conduct variable selection for autoregressive models with finite or infinite variance. A simulation study and a real data analysis are conducted to illustrate the effectiveness of our method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号