首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tetrachloroethylene (PCE) is a commonly used organic solvent and a suspected human carcinogen, reportedly transferred to human breast milk following inhalation exposure. Transfer of PCE to milk may represent a threat to the nursing infant. A physiologically based pharmacokinetic (PBPK) model was developed to quantitatively assess the transfer of inhaled PCE into breast milk and the consequent exposure of the nursing infant. The model was validated in lactating rats. Lactating Sprague-Dawley female rats were exposed via inhalation to PCE at concentrations ranging from 20-1000 ppm, and then returned to their nursing, 10- to 11-day-old pups. Tetrachloroethylene concentrations in the air, blood, milk, and tissue were determined by gas chromatography and compared to model predictions. The model described the distribution of inhaled PCE in maternal blood and milk, as well as the nursed pup's gastrointestinal tract, blood, and tissue. Several computer simulations of PCE distribution kinetics in exhaled air, blood, and milk of exposed human subjects were run and compared with limited human data available from the literature. It is concluded that the PBPK model successfully described the concentration of PCE in both lactating rats and humans. Although predictions vs. observations were good, the model slightly underpredicted the peak whole pup PCE concentration and underpredicted systemic clearance of PCE from the pup.  相似文献   

2.
A two-step methodology is described to make a health-based determination for the bathing and showering use of the water from a private well contaminated with volatile organic chemicals. The chemical perchloroethylene (PERC) is utilized to illustrate the approach. First, a chemical-specific exposure model is used to predict the concentration of PERC in the shower air, shower water, and in the air above the bathtub. Second, a physiologically based pharmacokinetic (PBPK) model is used to predict the concentration of PERC delivered to the target tissue, the brain, since the focus is on neurological endpoints. The simulation exercise includes concurrent dermal and inhalation routes of exposure. A reference target tissue level (RTTL) in the brain is estimated using the PBPK model. A hazard index based on this benchmark guideline is used to make a regulatory determination for bathing and showering use of the contaminated water.  相似文献   

3.
4.
Methyl t -butyl ether (MTBE) is a gasoline additive that has appeared in private wells as a result of leaking underground storage tanks. Neurological symptoms (headache, dizziness) have been reported from household use of MTBE-affected water, consistent with animal studies showing acute CNS depression from MTBE exposure. The current research evaluates acute CNS effects during bathing/showering by application of physiologically-based pharmacokinetic (PBPK) techniques to compare internal doses in animal toxicity studies to human exposure scenarios. An additional reference point was the delivered dose associated with the acute Minimum Risk Level (MRL) for MTBE established by the Agency for Toxic Substances and Disease Registry. A PBPK model for MTBE and its principal metabolite, t -butyl alcohol (TBA) was developed and validated against published data in rats and humans. PBPK analysis of animal studies showed that acute CNS toxicity after MTBE exposure can be attributed principally to the parent compound since the metabolite (TBA) internal dose was below that needed for CNS effects. The PBPK model was combined with an exposure model for bathing and showering which integrates inhalation and dermal exposures. This modeling indicated that bathing or showering in water containing MTBE at 1 mg/L would produce brain concentrations ˜1000-fold below the animal effects level and twofold below brain concentrations associated with the acute MRL. These findings indicate that MTBE water concentrations of 1 mg/L or below are unlikely to trigger acute CNS effects during bathing and showering. However, MTBE's strong odor may be a secondary but deciding factor regarding the suitability of such water for domestic uses.  相似文献   

5.
A screening approach is developed for volatile organic compounds (VOCs) to estimate exposures that correspond to levels measured in fluids and/or tissues in human biomonitoring studies. The approach makes use of a generic physiologically-based pharmacokinetic (PBPK) model coupled with exposure pattern characterization, Monte Carlo analysis, and quantitative structure property relationships (QSPRs). QSPRs are used for VOCs with minimal data to develop chemical-specific parameters needed for the PBPK model. The PBPK model is capable of simulating VOC kinetics following multiple routes of exposure, such as oral exposure via water ingestion and inhalation exposure during shower events. Using published human biomonitoring data of trichloroethylene (TCE), the generic model is evaluated to determine how well it estimates TCE concentrations in blood based on the known drinking water concentrations. In addition, Monte Carlo analysis is conducted to characterize the impact of the following factors: (1) uncertainties in the QSPR-estimated chemical-specific parameters; (2) variability in physiological parameters; and (3) variability in exposure patterns. The results indicate that uncertainty in chemical-specific parameters makes only a minor contribution to the overall variability and uncertainty in the predicted TCE concentrations in blood. The model is used in a reverse dosimetry approach to derive estimates of TCE concentrations in drinking water based on given measurements of TCE in blood, for comparison to the U.S. EPA's Maximum Contaminant Level in drinking water. This example demonstrates how a reverse dosimetry approach can be used to facilitate interpretation of human biomonitoring data in a health risk context by deriving external exposures that are consistent with a biomonitoring data set, thereby permitting comparison with health-based exposure guidelines.  相似文献   

6.
Although analysis of in vivo pharmacokinetic data necessitates use of time-dependent physiologically-based pharmacokinetic (PBPK) models, risk assessment applications are often driven primarily by steady-state and/or integrated (e.g., AUC) dosimetry. To that end, we present an analysis of steady-state solutions to a PBPK model for a generic volatile chemical metabolized in the liver. We derive an equivalent model that is much simpler and contains many fewer parameters than the full PBPK model. The state of the system can be specified by two state variables-the rate of metabolism and the rate of clearance by exhalation. For a given oral dose rate or inhalation exposure concentration, the system state only depends on the blood-air partition coefficient, metabolic constants, and the rates of blood flow to the liver and of alveolar ventilation. At exposures where metabolism is close to linear, only the effective first-order metabolic rate is needed. Furthermore, in this case, the relationship between cumulative exposure and average internal dose (e.g., AUCs) remains the same for time-varying exposures. We apply our analysis to oral-inhalation route extrapolation, showing that for any dose metric, route equivalence only depends on the parameters that determine the system state. Even if the appropriate dose metric is unknown, bounds can be placed on the route-to-route equivalence with very limited data. We illustrate this analysis by showing that it reproduces exactly the PBPK-model-based route-to-route extrapolation in EPA's 2000 risk assessment for vinyl chloride. Overall, we find that in many cases, steady-state solutions exactly reproduce or closely approximate the solutions using the full PBPK model, while being substantially more transparent. Subsequent work will examine the utility of steady-state solutions for analyzing cross-species extrapolation and intraspecies variability.  相似文献   

7.
A physiologically-based pharmacokinetic (PBPK) model for a mixture of toluene (TOL) and xylene (XYL), developed and validated in the rat, was used to predict the uptake and disposition kinetics of TOL/XYL mixture in humans. This was accomplished by substituting the rat physiological parameters and the blood:air partition coefficient with those of humans, scaling the maximal velocity for hepatic metabolism on the basis of body weight0.75, and keeping all other model parameters species-invariant. The human TOL/XYL mixture PBPK model, developed based on the quantitative biochemical mechanism of interaction elucidated in the rat (i.e., competitive metabolic inhibition), simulated adequately the kinetics of TOL and XYL during combined exposures in humans. The simulations with this PBPK model indicate that an eight hour co-exposure to concentrations that remain within the current threshold limit values of TOL (50 ppm) and XYL (100 ppm) would not result in significant pharmacokinetic interferences, thus implying that data on biological monitoring of worker exposure to these solvents would be unaffected during co-exposures.  相似文献   

8.
Using physiologically-based pharmacokinetic (PBPK) modeling, occupational, personal, and environmental benzene exposure scenarios are simulated for adult men and women. This research identifies differences in internal exposure due to physiological and biochemical gender differences. Physiological and chemical-specific model parameters were obtained from other studies reported in the literature and medical texts for the subjects of interest. Women were found to have a higher blood/air partition coefficient and maximum velocity of metabolism for benzene than men (the two most sensitive parameters affecting gender-specific differences). Additionally, women generally have a higher body fat percentage than men. These factors influence the internal exposure incurred by the subjects and should be considered when conducting a risk assessment. Results demonstrated that physicochemical gender differences result in women metabolizing 23–26% more benzene than men when subject to the same exposure scenario even though benzene blood concentration levels are generally higher in men. These results suggest that women may be at significantly higher risk for certain effects of benzene exposure. Thus, exposure standards based on data from male subjects may not be protective for the female population.  相似文献   

9.
Genistein is a phytoestrogen-a plant-derived compound that binds to and activates the estrogen receptor-occurring at high levels in soy beans and food products, leading to widespread human exposure. The numerous scientific publications available describing genistein's dosimetry, mechanisms of action, and identified or putative health effects in both experimental animals and humans make it ideal for examination as an example of endocrine-active compound (EAC). We developed a physiologically-based pharmacokinetic (PBPK) model to quantify the internal, target-tissue dosimetry of genistein in adult rats. Complexities of the model include enterohepatic circulation, binding of both genistein and its conjugates to plasma proteins, and the multiple compartments used to describe transport through the bile duct and gastrointestinal tract. Other aspects of the model are simple perfusion-limited transport to the tissue groups and first-order rates of metabolism, uptake, and excretion. We describe here the model structure and initial calibration of the model by fitting to a large data set for Wistar rats. The model structure can be readily extrapolated to describe genistein dosimetry in humans or modified to describe the dosimetry of other phytoestrogens and phenolic EACs. The model does a fair job of capturing the pharmacokinetics. Although it does not describe the interindividual variability and we have not identified a single set of parameters that provide a good fit to the data for both oral and intravenous exposures, we believe it provides a good initial attempt at PBPK modeling for genistein, which can serve as a template for other phytoestrogens and in the design of future experiments and research that can be used to fill data gaps and better estimate model parameters.  相似文献   

10.
A Bayesian approach, implemented using Markov Chain Monte Carlo (MCMC) analysis, was applied with a physiologically‐based pharmacokinetic (PBPK) model of methylmercury (MeHg) to evaluate the variability of MeHg exposure in women of childbearing age in the U.S. population. The analysis made use of the newly available National Health and Nutrition Survey (NHANES) blood and hair mercury concentration data for women of age 16–49 years (sample size, 1,582). Bayesian analysis was performed to estimate the population variability in MeHg exposure (daily ingestion rate) implied by the variation in blood and hair concentrations of mercury in the NHANES database. The measured variability in the NHANES blood and hair data represents the result of a process that includes interindividual variation in exposure to MeHg and interindividual variation in the pharmacokinetics (distribution, clearance) of MeHg. The PBPK model includes a number of pharmacokinetic parameters (e.g., tissue volumes, partition coefficients, rate constants for metabolism and elimination) that can vary from individual to individual within the subpopulation of interest. Using MCMC analysis, it was possible to combine prior distributions of the PBPK model parameters with the NHANES blood and hair data, as well as with kinetic data from controlled human exposures to MeHg, to derive posterior distributions that refine the estimates of both the population exposure distribution and the pharmacokinetic parameters. In general, based on the populations surveyed by NHANES, the results of the MCMC analysis indicate that a small fraction, less than 1%, of the U.S. population of women of childbearing age may have mercury exposures greater than the EPA RfD for MeHg of 0.1 μg/kgg/day, and that there are few, if any, exposures greater than the ATSDR MRL of 0.3 μgg/kgg/day. The analysis also indicates that typical exposures may be greater than previously estimated from food consumption surveys, but that the variability in exposure within the population of U.S. women of childbearing age may be less than previously assumed.  相似文献   

11.
Reassessing Benzene Cancer Risks Using Internal Doses   总被引:1,自引:0,他引:1  
Human cancer risks from benzene exposure have previously been estimated by regulatory agencies based primarily on epidemiological data, with supporting evidence provided by animal bioassay data. This paper reexamines the animal-based risk assessments for benzene using physiologically-based pharmacokinetic (PBPK) models of benzene metabolism in animals and humans. It demonstrates that internal doses (interpreted as total benzene metabolites formed) from oral gavage experiments in mice are well predicted by a PBPK model developed by Travis et al. Both the data and the model outputs can also be accurately described by the simple nonlinear regression model total metabolites = 76.4x/(80.75 + x), where x = administered dose in mg/kg/day. Thus, PBPK modeling validates the use of such nonlinear regression models, previously used by Bailer and Hoel. An important finding is that refitting the linearized multistage (LMS) model family to internal doses and observed responses changes the maximum-likelihood estimate (MLE) dose-response curve for mice from linear-quadratic to cubic, leading to low-dose risk estimates smaller than in previous risk assessments. This is consistent with the conclusion for mice from the Bailer and Hoel analysis. An innovation in this paper is estimation of internal doses for humans based on a PBPK model (and the regression model approximating it) rather than on interspecies dose conversions. Estimates of human risks at low doses are reduced by the use of internal dose estimates when the estimates are obtained from a PBPK model, in contrast to Bailer and Hoel's findings based on interspecies dose conversion. Sensitivity analyses and comparisons with epidemiological data and risk models suggest that our finding of a nonlinear MLE dose-response curve at low doses is robust to changes in assumptions and more consistent with epidemiological data than earlier risk models.  相似文献   

12.
Benzene is myelotoxic and leukemogenic in humans exposed at high doses (>1 ppm, more definitely above 10 ppm) for extended periods. However, leukemia risks at lower exposures are uncertain. Benzene occurs widely in the work environment and also indoor air, but mostly below 1 ppm, so assessing the leukemia risks at these low concentrations is important. Here, we describe a human physiologically-based pharmacokinetic (PBPK) model that quantifies tissue doses of benzene and its key metabolites, benzene oxide, phenol, and hydroquinone after inhalation and oral exposures. The model was integrated into a statistical framework that acknowledges sources of variation due to inherent intra- and interindividual variation, measurement error, and other data collection issues. A primary contribution of this work is the estimation of population distributions of key PBPK model parameters. We hypothesized that observed interindividual variability in the dosimetry of benzene and its metabolites resulted primarily from known or estimated variability in key metabolic parameters and that a statistical PBPK model that explicitly included variability in only those metabolic parameters would sufficiently describe the observed variability. We then identified parameter distributions for the PBPK model to characterize observed variability through the use of Markov chain Monte Carlo analysis applied to two data sets. The identified parameter distributions described most of the observed variability, but variability in physiological parameters such as organ weights may also be helpful to faithfully predict the observed human-population variability in benzene dosimetry.  相似文献   

13.
A Monte Carlo simulation is incorporated into a risk assessment for trichloroethylene (TCE) using physiologically-based pharmacokinetic (PBPK) modeling coupled with the linearized multistage model to derive human carcinogenic risk extrapolations. The Monte Carlo technique incorporates physiological parameter variability to produce a statistically derived range of risk estimates which quantifies specific uncertainties associated with PBPK risk assessment approaches. Both inhalation and ingestion exposure routes are addressed. Simulated exposure scenarios were consistent with those used by the Environmental Protection Agency (EPA) in their TCE risk assessment. Mean values of physiological parameters were gathered from the literature for both mice (carcinogenic bioassay subjects) and for humans. Realistic physiological value distributions were assumed using existing data on variability. Mouse cancer bioassay data were correlated to total TCE metabolized and area-under-the-curve (blood concentration) trichloroacetic acid (TCA) as determined by a mouse PBPK model. These internal dose metrics were used in a linearized multistage model analysis to determine dose metric values corresponding to 10-6 lifetime excess cancer risk. Using a human PBPK model, these metabolized doses were then extrapolated to equivalent human exposures (inhalation and ingestion). The Monte Carlo iterations with varying mouse and human physiological parameters produced a range of human exposure concentrations producing a 10-6 risk.  相似文献   

14.
Physiologically‐based pharmacokinetic (PBPK) models are often submitted to or selected by agencies, such as the U.S. Environmental Protection Agency (U.S. EPA) and Agency for Toxic Substances and Disease Registry, for consideration for application in human health risk assessment (HHRA). Recently, U.S. EPA evaluated the human PBPK models for perchlorate and radioiodide for their ability to estimate the relative sensitivity of perchlorate inhibition on thyroidal radioiodide uptake for various population groups and lifestages. The most well‐defined mode of action of the environmental contaminant, perchlorate, is competitive inhibition of thyroidal iodide uptake by the sodium‐iodide symporter (NIS). In this analysis, a six‐step framework for PBPK model evaluation was followed, and with a few modifications, the models were determined to be suitable for use in HHRA to evaluate relative sensitivity among human lifestages. Relative sensitivity to perchlorate was determined by comparing the PBPK model predicted percent inhibition of thyroidal radioactive iodide uptake (RAIU) by perchlorate for different lifestages. A limited sensitivity analysis indicated that model parameters describing urinary excretion of perchlorate and iodide were particularly important in prediction of RAIU inhibition; therefore, a range of biologically plausible values available in the peer‐reviewed literature was evaluated. Using the updated PBPK models, the greatest sensitivity to RAIU inhibition was predicted to be the near‐term fetus (gestation week 40) compared to the average adult and other lifestages; however, when exposure factors were taken into account, newborns were found to be populations that need further evaluation and consideration in a risk assessment for perchlorate.  相似文献   

15.
Based on a variety of maternal occupational and residential inhalation exposure scenarios, estimates of infant exposure to the dry-cleaning solvent tetrachlorothylene (perchloroethylene, PCE) in breastmilk were made. Physiologically based pharmacokinetic (PBPK) modeling indicates that infants may be exposed to elevated levels of PCE in breastmilk due to their mothers' inhalation of PCE. The PBPK-predicted breastmilk PCE concentrations agree very well with measured concentrations, where available. Based on this analysis, infants may be exposed to this workplace chemical via breastmilk at doses corresponding to rather high levels of risk. Predicted breastmilk doses provide the infant with little margin of exposure to doses associated with adverse health effects. In addition, the estimated increased cancer risks associated with these infant exposures are large under certain exposure scenarios. The actual concentrations of PCE in breastmilk of exposed mothers can only be known with certainty if monitoring is conducted. Due to the widespread exposure potential, monitoring studies should be undertaken so that the appropriate risk management alternatives can be better evaluated.  相似文献   

16.
Chloroform is a carcinogen in rodents and its carcinogenicity is secondary to events associated with cytotoxicity and regenerative cell proliferation. In this study, a physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model that links the processes of chloroform metabolism, reparable cell damage, cell death, and regenerative cellular proliferation was developed to support a new cancer dose-response assessment for chloroform. Model parameters were estimated using Markov Chain Monte Carlo (MCMC) analysis in a two-step approach: (1) metabolism parameters for male and female mice and rats were estimated against available closed chamber gas uptake data; and (2) PD parameters for each of the four rodent groups were estimated from hepatic and renal labeling index data following inhalation exposures. Subsequently, the resulting rodent PD parameters together with literature values for human age-dependent physiological and metabolism parameters were used to scale up the rodent model to a human model. The human model was used to predict exposure conditions under which chloroform-mediated cytolethality is expected to occur in liver and kidney of adults and children. Using the human model, inhalation Reference Concentrations (RfCs) and oral Reference Doses (RfDs) were derived using an uncertainty factor of 10. Based on liver and kidney dose metrics, the respective RfCs were 0.9 and 0.09 ppm; and the respective RfDs were 0.4 and 3 mg/kg/day.  相似文献   

17.
There has been an increasing interest in physiologically based pharmacokinetic (PBPK)models in the area of risk assessment. The use of these models raises two important issues: (1)How good are PBPK models for predicting experimental kinetic data? (2)How is the variability in the model output affected by the number of parameters and the structure of the model? To examine these issues, we compared a five-compartment PBPK model, a three-compartment PBPK model, and nonphysiological compartmental models of benzene pharmacokinetics. Monte Carlo simulations were used to take into account the variability of the parameters. The models were fitted to three sets of experimental data and a hypothetical experiment was simulated with each model to provide a uniform basis for comparison. Two main results are presented: (1)the difference is larger between the predictions of the same model fitted to different data se1ts than between the predictions of different models fitted to the dame data; and (2)the type of data used to fit the model has a larger effect on the variability of the predictions than the type of model and the number of parameters.  相似文献   

18.
Mark Nicas  Gang Sun 《Risk analysis》2006,26(4):1085-1096
Certain respiratory tract infections can be transmitted by hand-to-mucous-membrane contact, inhalation, and/or direct respiratory droplet spray. In a room occupied by a patient with such a transmissible infection, pathogens present on textile and nontextile surfaces, and pathogens present in the air, provide sources of exposure for an attending health-care worker (HCW); in addition, close contact with the patient when the latter coughs allows for droplet spray exposure. We present an integrated model of pertinent source-environment-receptor pathways, and represent physical elements in these pathways as "states" in a discrete-time Markov chain model. We estimate the rates of transfer at various steps in the pathways, and their relationship to the probability that a pathogen in one state has moved to another state by the end of a specified time interval. Given initial pathogen loads on textile and nontextile surfaces and in room air, we use the model to estimate the expected pathogen dose to a HCW's mucous membranes and respiratory tract. In turn, using a nonthreshold infectious dose model, we relate the expected dose to infection risk. The system is illustrated with a hypothetical but plausible scenario involving a viral pathogen emitted via coughing. We also use the model to show that a biocidal finish on textile surfaces has the potential to substantially reduce infection risk via the hand-to-mucous-membrane exposure pathway.  相似文献   

19.
A physiologically‐based pharmacokinetic (PBPK) model of benzene inhalation based on a recent mouse model was adapted to include bone marrow (target organ) and urinary bladder compartments. Empirical data on human liver microsomal protein levels and linked CYP2E1 activities were incorporated into the model, and metabolite‐specific conversion rate parameters were estimated by fitting to human biomonitoring data and adjusting for background levels of urinary metabolites. Human studies of benzene levels in blood and breath, and phenol levels in urine were used to validate the rate of human conversion of benzene to benzene oxide, and urinary benzene metabolites from Chinese benzene worker populations provided model validation for rates of human conversion of benzene to muconic acid (MA) and phenylmercapturic acid (PMA), phenol (PH), catechol (CA), hydroquinone (HQ), and benzenetriol (BT). The calibrated human model reveals that while liver microsomal protein and CYP2E1 activities are lower on average in humans compared to mice, the mouse also shows far lower rates of benzene conversion to MA and PMA, and far higher conversion of benzene to BO/PH, and of BO/PH to CA, HQ, and BT. The model also differed substantially from existing human PBPK models with respect to several metabolic rate parameters of importance to interpreting benzene metabolism and health risks in human populations associated with bone marrow doses. The model provides a new methodological paradigm focused on integrating linked human liver metabolism data and calibration using biomonitoring data, thus allowing for model uncertainty analysis and more rigorous validation.  相似文献   

20.
Robert M. Park 《Risk analysis》2020,40(12):2561-2571
Uncertainty in model predictions of exposure response at low exposures is a problem for risk assessment. A particular interest is the internal concentration of an agent in biological systems as a function of external exposure concentrations. Physiologically based pharmacokinetic (PBPK) models permit estimation of internal exposure concentrations in target tissues but most assume that model parameters are either fixed or instantaneously dose-dependent. Taking into account response times for biological regulatory mechanisms introduces new dynamic behaviors that have implications for low-dose exposure response in chronic exposure. A simple one-compartment simulation model is described in which internal concentrations summed over time exhibit significant nonlinearity and nonmonotonicity in relation to external concentrations due to delayed up- or downregulation of a metabolic pathway. These behaviors could be the mechanistic basis for homeostasis and for some apparent hormetic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号