共查询到20条相似文献,搜索用时 15 毫秒
1.
The Hinde–Demétrio (HD) family of distributions, which are discrete exponential dispersion models with an additional real index parameter p, have been recently characterized from the unit variance function μ + μ p . For p equals to 2, 3,…, the corresponding distributions are concentrated on non negative integers, overdispersed and zero-inflated with respect to a Poisson distribution having the same mean. The negative binomial (p = 2) and strict arcsine (p = 3) distributions are HD families; the limit case (p → ∞) is associated to a suitable Poisson distribution. Apart from these count distributions, none of the HD distributions has explicit probability mass functions p k . This article shows that the ratios r k = k p k /p k?1, k = 1,…, p ? 1, are equal and different from r p . This new property allows, for a given count data set, to determine the integer p by some tests. The extreme situation of p = 2 is of general interest for count data. Some examples are used for illustrations and discussions. 相似文献
2.
Weerinrada Wongrin 《Journal of applied statistics》2017,44(15):2659-2671
The purpose of this paper is to develop a new linear regression model for count data, namely generalized-Poisson Lindley (GPL) linear model. The GPL linear model is performed by applying generalized linear model to GPL distribution. The model parameters are estimated by the maximum likelihood estimation. We utilize the GPL linear model to fit two real data sets and compare it with the Poisson, negative binomial (NB) and Poisson-weighted exponential (P-WE) models for count data. It is found that the GPL linear model can fit over-dispersed count data, and it shows the highest log-likelihood, the smallest AIC and BIC values. As a consequence, the linear regression model from the GPL distribution is a valuable alternative model to the Poisson, NB, and P-WE models. 相似文献
3.
In this paper, we present a multivariate version of the skewed log-Birnbaum–Saunders regression model. This new family of distributions holds good properties such as marginal variables following univariate skewed log-Birnbaum–Saunders distributions, besides presenting the usual log-Birnbaum–Saunders distribution as a particular case. Furthermore, the model parameters are estimated through maximum-likelihood methods, a closed-form expression for the Fisher’s information matrix is presented, and testing hypothesis for model parameters is performed. Two real datasets are analyzed and results are discussed. 相似文献
4.
Hwa Kyung Lim Naveen N. Narisetty 《Journal of Statistical Computation and Simulation》2017,87(2):328-347
Multivariate mixture regression models can be used to investigate the relationships between two or more response variables and a set of predictor variables by taking into consideration unobserved population heterogeneity. It is common to take multivariate normal distributions as mixing components, but this mixing model is sensitive to heavy-tailed errors and outliers. Although normal mixture models can approximate any distribution in principle, the number of components needed to account for heavy-tailed distributions can be very large. Mixture regression models based on the multivariate t distributions can be considered as a robust alternative approach. Missing data are inevitable in many situations and parameter estimates could be biased if the missing values are not handled properly. In this paper, we propose a multivariate t mixture regression model with missing information to model heterogeneity in regression function in the presence of outliers and missing values. Along with the robust parameter estimation, our proposed method can be used for (i) visualization of the partial correlation between response variables across latent classes and heterogeneous regressions, and (ii) outlier detection and robust clustering even under the presence of missing values. We also propose a multivariate t mixture regression model using MM-estimation with missing information that is robust to high-leverage outliers. The proposed methodologies are illustrated through simulation studies and real data analysis. 相似文献
5.
Vicente G. Cancho Edwin M.M. Ortega Gilberto A. Paula 《Journal of statistical planning and inference》2010
The purpose of this paper is to develop a Bayesian approach for log-Birnbaum–Saunders Student-t regression models under right-censored survival data. Markov chain Monte Carlo (MCMC) methods are used to develop a Bayesian procedure for the considered model. In order to attenuate the influence of the outlying observations on the parameter estimates, we present in this paper Birnbaum–Saunders models in which a Student-t distribution is assumed to explain the cumulative damage. Also, some discussions on the model selection to compare the fitted models are given and case deletion influence diagnostics are developed for the joint posterior distribution based on the Kullback–Leibler divergence. The developed procedures are illustrated with a real data set. 相似文献
6.
Victor H. Lachos Dipak K. Dey Vicente G. Cancho 《Journal of Statistical Computation and Simulation》2017,87(10):2002-2022
The main objective of this paper is to develop a full Bayesian analysis for the Birnbaum–Saunders (BS) regression model based on scale mixtures of the normal (SMN) distribution with right-censored survival data. The BS distributions based on SMN models are a very general approach for analysing lifetime data, which has as special cases the Student-t-BS, slash-BS and the contaminated normal-BS distributions, being a flexible alternative to the use of the corresponding BS distribution or any other well-known compatible model, such as the log-normal distribution. A Gibbs sample algorithm with Metropolis–Hastings algorithm is used to obtain the Bayesian estimates of the parameters. Moreover, some discussions on the model selection to compare the fitted models are given and case-deletion influence diagnostics are developed for the joint posterior distribution based on the Kullback–Leibler divergence. The newly developed procedures are illustrated on a real data set previously analysed under BS regression models. 相似文献
7.
Population size estimation with discrete or nonparametric mixture models is considered, and reliable ways of construction
of the nonparametric mixture model estimator are reviewed and set into perspective. Construction of the maximum likelihood
estimator of the mixing distribution is done for any number of components up to the global nonparametric maximum likelihood
bound using the EM algorithm. In addition, the estimators of Chao and Zelterman are considered with some generalisations of
Zelterman’s estimator. All computations are done with CAMCR, a special software developed for population size estimation with mixture models. Several examples and data sets are discussed
and the estimators illustrated. Problems using the mixture model-based estimators are highlighted. 相似文献
8.
Lifetime Data Analysis - The aim of this study is to provide an analysis of gap event times under the illness–death model, where some subjects experience “illness” before... 相似文献
9.
The Jackknife-after-bootstrap (JaB) technique originally developed by Efron [8] has been proposed as an approach to improve the detection of influential observations in linear regression models by Martin and Roberts [12] and Beyaztas and Alin [2]. The method is based on the use of percentile-method confidence intervals to provide improved cut-off values for several single case-deletion influence measures. In order to improve JaB, we propose using robust versions of Efron [7]’s bias-corrected and accelerated (BCa) bootstrap confidence intervals. In this study, the performances of robust BCa–JaB and conventional JaB methods are compared in the cases of DFFITS, Welsch's distance and modified Cook's distance influence diagnostics. Comparisons are based on both real data examples and through a simulation study. Our results reveal that under a variety of scenarios, our proposed method provides more accurate and reliable results, and it is more robust to masking effects. 相似文献
10.
《Journal of Statistical Computation and Simulation》2012,82(11):983-997
Little work has been published on the analysis of censored data for the Birnbaum–Saunders distribution (BISA). In this article, we implement the EM algorithm to fit a regression model with censored data when the failure times follow the BISA. Three approaches to implement the E-Step of the EM algorithm are considered. In two of these implementations, the M-Step is attained by an iterative least-squares procedure. The algorithm is exemplified with a single explanatory variable in the model. 相似文献
11.
12.
We consider the issue of assessing influence of observations in the class of Birnbaum–Saunders nonlinear regression models, which is useful in lifetime data analysis. Our results generalize those in Galea et al. [8] which are confined to Birnbaum–Saunders linear regression models. Some influence methods, such as the local influence, total local influence of an individual and generalized leverage are discussed. Additionally, the normal curvatures for studying local influence are derived under some perturbation schemes. We also give an application to a real fatigue data set. 相似文献
13.
The Conway–Maxwell–Poisson estimator is considered in this paper as the population size estimator. The benefit of using the Conway–Maxwell–Poisson distribution is that it includes the Bernoulli, the Geometric and the Poisson distributions as special cases and, furthermore, allows for heterogeneity. Little emphasis is often placed on the variability associated with the population size estimate. This paper provides a deep and extensive comparison of bootstrap methods in the capture–recapture setting. It deals with the classical bootstrap approach using the true population size, the true bootstrap, and the classical bootstrap using the observed sample size, the reduced bootstrap. Furthermore, the imputed bootstrap, as well as approximating forms in terms of standard errors and confidence intervals for the population size, under the Conway–Maxwell–Poisson distribution, have been investigated and discussed. These methods are illustrated in a simulation study and in benchmark real data examples. 相似文献
14.
Sangwook Kang 《Journal of Statistical Computation and Simulation》2017,87(4):652-663
A nested case–control (NCC) study is an efficient cohort-sampling design in which a subset of controls are sampled from the risk set at each event time. Since covariate measurements are taken only for the sampled subjects, time and efforts of conducting a full scale cohort study can be saved. In this paper, we consider fitting a semiparametric accelerated failure time model to failure time data from a NCC study. We propose to employ an efficient induced smoothing procedure for rank-based estimating method for regression parameters estimation. For variance estimation, we propose to use an efficient resampling method that utilizes the robust sandwich form. We extend our proposed methods to a generalized NCC study that allows a sampling of cases. Finite sample properties of the proposed estimators are investigated via an extensive stimulation study. An application to a tumor study illustrates the utility of the proposed method in routine data analysis. 相似文献
15.
Time-varying coefficient models with autoregressive and moving-average–generalized autoregressive conditional heteroscedasticity structure are proposed for examining the time-varying effects of risk factors in longitudinal studies. Compared with existing models in the literature, the proposed models give explicit patterns for the time-varying coefficients. Maximum likelihood and marginal likelihood (based on a Laplace approximation) are used to estimate the parameters in the proposed models. Simulation studies are conducted to evaluate the performance of these two estimation methods, which is measured in terms of the Kullback–Leibler divergence and the root mean square error. The marginal likelihood approach leads to the more accurate parameter estimates, although it is more computationally intensive. The proposed models are applied to the Framingham Heart Study to investigate the time-varying effects of covariates on coronary heart disease incidence. The Bayesian information criterion is used for specifying the time series structures of the coefficients of the risk factors. 相似文献
16.
17.
Adaptive robust estimation in joint mean–covariance regression model for bivariate longitudinal data
The estimation of the covariance matrix is important in the analysis of bivariate longitudinal data. A good estimator for the covariance matrix can improve the efficiency of the estimators of the mean regression coefficients. Furthermore, the covariance estimation itself is also of interest, but it is a challenging job to model the covariance matrix of bivariate longitudinal data due to the complex structure and positive definite constraint. In addition, most of existing approaches are based on the maximum likelihood, which is very sensitive to outliers or heavy-tail error distributions. In this article, an adaptive robust estimation method is proposed for bivariate longitudinal data. Unlike the existing likelihood-based methods, the proposed method can adapt to different error distributions. Specifically, at first, we utilize the modified Cholesky block decomposition to parameterize the covariance matrices. Secondly, we apply the bounded Huber's score function to develop a set of robust generalized estimating equations to estimate the parameters both in the mean and the covariance models simultaneously. A data-driven approach is presented to select the parameter c in the Huber's score function, which can ensure that the proposed method is robust and efficient. A simulation study and a real data analysis are conducted to illustrate the robustness and efficiency of the proposed approach. 相似文献
18.
The problem of testing for a parameter change has been a core issue in time series analysis. It is well known that the estimates-based CUSUM test often suffers from severe size distortions in general GARCH type models. The residual-based CUSUM test has been used as an alternative, which, however, has a defect not to detect the ARMA parameter changes in ARMA–GARCH models. As a remedy, one can employ the score vector-based CUSUM test in ARMA–GARCH models as in Oh and Lee (0000). However, it shows some size distortions for relatively small samples. Hence, we consider the bootstrap counterpart for obtaining a more stable test. Focus is made on the verification of the weak consistency of the proposed test. An empirical study is illustrated for its evaluation. 相似文献
19.
Jiexiang Li 《统计学通讯:理论与方法》2013,42(19):5751-5761
20.
In this paper, we propose a method to assess influence in skew-Birnbaum–Saunders regression models, which are an extension based on the skew-normal distribution of the usual Birnbaum–Saunders (BS) regression model. An interesting characteristic that the new regression model has is the capacity of predicting extreme percentiles, which is not possible with the BS model. In addition, since the observed likelihood function associated with the new regression model is more complex than that from the usual model, we facilitate the parameter estimation using a type-EM algorithm. Moreover, we employ influence diagnostic tools that considers this algorithm. Finally, a numerical illustration includes a brief simulation study and an analysis of real data in order to show the proposed methodology. 相似文献