首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The bivariate negative binomial regression (BNBR) and the bivariate Poisson log-normal regression (BPLR) models have been used to describe count data that are over-dispersed. In this paper, a new bivariate generalized Poisson regression (BGPR) model is defined. An advantage of the new regression model over the BNBR and BPLR models is that the BGPR can be used to model bivariate count data with either over-dispersion or under-dispersion. In this paper, we carry out a simulation study to compare the three regression models when the true data-generating process exhibits over-dispersion. In the simulation experiment, we observe that the bivariate generalized Poisson regression model performs better than the bivariate negative binomial regression model and the BPLR model.  相似文献   

2.
Hall (2000) has described zero‐inflated Poisson and binomial regression models that include random effects to account for excess zeros and additional sources of heterogeneity in the data. The authors of the present paper propose a general score test for the null hypothesis that variance components associated with these random effects are zero. For a zero‐inflated Poisson model with random intercept, the new test reduces to an alternative to the overdispersion test of Ridout, Demério & Hinde (2001). The authors also examine their general test in the special case of the zero‐inflated binomial model with random intercept and propose an overdispersion test in that context which is based on a beta‐binomial alternative.  相似文献   

3.
Count data often display excessive number of zero outcomes than are expected in the Poisson regression model. The zero-inflated Poisson regression model has been suggested to handle zero-inflated data, whereas the zero-inflated negative binomial (ZINB) regression model has been fitted for zero-inflated data with additional overdispersion. For bivariate and zero-inflated cases, several regression models such as the bivariate zero-inflated Poisson (BZIP) and bivariate zero-inflated negative binomial (BZINB) have been considered. This paper introduces several forms of nested BZINB regression model which can be fitted to bivariate and zero-inflated count data. The mean–variance approach is used for comparing the BZIP and our forms of BZINB regression model in this study. A similar approach was also used by past researchers for defining several negative binomial and zero-inflated negative binomial regression models based on the appearance of linear and quadratic terms of the variance function. The nested BZINB regression models proposed in this study have several advantages; the likelihood ratio tests can be performed for choosing the best model, the models have flexible forms of marginal mean–variance relationship, the models can be fitted to bivariate zero-inflated count data with positive or negative correlations, and the models allow additional overdispersion of the two dependent variables.  相似文献   

4.
Shared frailty models are often used to model heterogeneity in survival analysis. There are certain assumptions about the baseline distribution and distribution of frailty. In this paper, four shared frailty models with frailty distribution gamma, inverse Gaussian, compound Poisson, and compound negative binomial with exponential power as baseline distribution are proposed. These models are fitted using Markov Chain Monte Carlo methods. These models are illustrated with a real life bivariate survival data set of McGilchrist and Aisbett (1991) related to kidney infection, and the best model is suggested for the data using different model comparison criteria.  相似文献   

5.
Zero inflation means that the proportion of 0's of a model is greater than the proportion of 0's of the corresponding Poisson model, which is a common phenomenon in count data. To model the zero-inflated characteristic of time series of counts, we propose zero-inflated Poisson and negative binomial INGARCH models, which are useful and flexible generalizations of the Poisson and negative binomial INGARCH models, respectively. The stationarity conditions and the autocorrelation function are given. Based on the EM algorithm, the estimating procedure is simple and easy to be implemented. A simulation study shows that the estimation method is accurate and reliable as long as the sample size is reasonably large. A real data example leads to superior performance of the proposed models compared with other competitive models in the literature.  相似文献   

6.
Global regression assumes that a single model adequately describes all parts of a study region. However, the heterogeneity in the data may be sufficiently strong that relationships between variables can not be spatially constant. In addition, the factors involved are often sufficiently complex that it is difficult to identify them in the form of explanatory variables. As a result Geographically Weighted Regression (GWR) was introduced as a tool for the modeling of non-stationary spatial data. Using kernel functions, the GWR methodology allows the model parameters to vary spatially and produces non-parametric surfaces of their estimates. To model count data with overdispersion, it is more appropriate to use a negative binomial distribution instead of a Poisson distribution. Therefore, we propose the Geographically Weighted Negative Binomial Regression (GWNBR) method for the modeling of data with overdispersion. The results obtained using simulated and real data show the superiority of this method for the modeling of non-stationary count data with overdispersion compared with competing models, such as global regressions, e.g., Poisson and negative binomial and Geographically Weighted Poisson Regression (GWPR). Moreover, we illustrate that these competing models are special cases of the more robust model GWNBR.  相似文献   

7.
In certain applications involving discrete data, it is sometimes found that X = 0 is observed with a frequency significantly higher than predicted by the assumed model. Zero inflated Poisson, binomial and negative binomial models have been employed in some clinical trials and in some regression analysis problems.

In this paper, we study the zero inflated modified power series distributions (IMPSD) which include among others the generalized Poisson and the generalized negative binomial distributions and hence the Poisson, binomial and negative binomial distributions. The structural properties along with the distribution of the sum of independent IMPSD variables are studied. The maximum likelihood estimation of the parameters of the model is examined and the variance-covariance matrix of the estimators is obtained. Finally, examples are presented for the generalized Poisson distribution to illustrate the results.  相似文献   

8.
In this study, estimation of the parameters of the zero-inflated count regression models and computations of posterior model probabilities of the log-linear models defined for each zero-inflated count regression models are investigated from the Bayesian point of view. In addition, determinations of the most suitable log-linear and regression models are investigated. It is known that zero-inflated count regression models cover zero-inflated Poisson, zero-inflated negative binomial, and zero-inflated generalized Poisson regression models. The classical approach has some problematic points but the Bayesian approach does not have similar flaws. This work points out the reasons for using the Bayesian approach. It also lists advantages and disadvantages of the classical and Bayesian approaches. As an application, a zoological data set, including structural and sampling zeros, is used in the presence of extra zeros. In this work, it is observed that fitting a zero-inflated negative binomial regression model creates no problems at all, even though it is known that fitting a zero-inflated negative binomial regression model is the most problematic procedure in the classical approach. Additionally, it is found that the best fitting model is the log-linear model under the negative binomial regression model, which does not include three-way interactions of factors.  相似文献   

9.
We describe a class of random field models for geostatistical count data based on Gaussian copulas. Unlike hierarchical Poisson models often used to describe this type of data, Gaussian copula models allow a more direct modelling of the marginal distributions and association structure of the count data. We study in detail the correlation structure of these random fields when the family of marginal distributions is either negative binomial or zero‐inflated Poisson; these represent two types of overdispersion often encountered in geostatistical count data. We also contrast the correlation structure of one of these Gaussian copula models with that of a hierarchical Poisson model having the same family of marginal distributions, and show that the former is more flexible than the latter in terms of range of feasible correlation, sensitivity to the mean function and modelling of isotropy. An exploratory analysis of a dataset of Japanese beetle larvae counts illustrate some of the findings. All of these investigations show that Gaussian copula models are useful alternatives to hierarchical Poisson models, specially for geostatistical count data that display substantial correlation and small overdispersion.  相似文献   

10.
孟生旺  杨亮 《统计研究》2015,32(11):97-103
索赔频率预测是非寿险费率厘定的重要组成部分。最常使用的索赔频率预测模型是泊松回归和负二项回归,以及与它们相对应的零膨胀回归模型。但是,当索赔次数观察值既具有零膨胀特征,又存在组内相依结构时,上述模型都不能很好地拟合实际数据。为此,本文在泊松分布、负二项分布、广义泊松分布、P型负二项分布等条件下分别建立了随机效应零膨胀损失次数回归模型。为了改进模型的预测效果,对于连续型的解释变量,还引入了二次平滑项,并建立了结构性零比例与解释变量之间的回归关系。基于一组实际索赔次数数据的实证分析结果表明,该模型可以显著改进现有模型的拟合效果。  相似文献   

11.
In recent years, there has been considerable interest in regression models based on zero-inflated distributions. These models are commonly encountered in many disciplines, such as medicine, public health, and environmental sciences, among others. The zero-inflated Poisson (ZIP) model has been typically considered for these types of problems. However, the ZIP model can fail if the non-zero counts are overdispersed in relation to the Poisson distribution, hence the zero-inflated negative binomial (ZINB) model may be more appropriate. In this paper, we present a Bayesian approach for fitting the ZINB regression model. This model considers that an observed zero may come from a point mass distribution at zero or from the negative binomial model. The likelihood function is utilized to compute not only some Bayesian model selection measures, but also to develop Bayesian case-deletion influence diagnostics based on q-divergence measures. The approach can be easily implemented using standard Bayesian software, such as WinBUGS. The performance of the proposed method is evaluated with a simulation study. Further, a real data set is analyzed, where we show that ZINB regression models seems to fit the data better than the Poisson counterpart.  相似文献   

12.
In survey sampling and in stereology, it is often desirable to estimate the ratio of means θ= E(Y)/E(X) from bivariate count data (X, Y) with unknown joint distribution. We review methods that are available for this problem, with particular reference to stereological applications. We also develop new methods based on explicit statistical models for the data, and associated model diagnostics. The methods are tested on a stereological dataset. For point‐count data, binomial regression and bivariate binomial models are generally adequate. Intercept‐count data are often overdispersed relative to Poisson regression models, but adequately fitted by negative binomial regression.  相似文献   

13.
In recent years, a variety of regression models, including zero-inflated and hurdle versions, have been proposed to explain the case of a dependent variable with respect to exogenous covariates. Apart from the classical Poisson, negative binomial and generalised Poisson distributions, many proposals have appeared in the statistical literature, perhaps in response to the new possibilities offered by advanced software that now enables researchers to implement numerous special functions in a relatively simple way. However, we believe that a significant research gap remains, since very little attention has been paid to the quasi-binomial distribution, which was first proposed over fifty years ago. We believe this distribution might constitute a valid alternative to existing regression models, in situations in which the variable has bounded support. Therefore, in this paper we present a zero-inflated regression model based on the quasi-binomial distribution, taking into account the moments and maximum likelihood estimators, and perform a score test to compare the zero-inflated quasi-binomial distribution with the zero-inflated binomial distribution, and the zero-inflated model with the homogeneous model (the model in which covariates are not considered). This analysis is illustrated with two data sets that are well known in the statistical literature and which contain a large number of zeros.  相似文献   

14.
Modelling count data with overdispersion and spatial effects   总被引:1,自引:1,他引:0  
In this paper we consider regression models for count data allowing for overdispersion in a Bayesian framework. We account for unobserved heterogeneity in the data in two ways. On the one hand, we consider more flexible models than a common Poisson model allowing for overdispersion in different ways. In particular, the negative binomial and the generalized Poisson (GP) distribution are addressed where overdispersion is modelled by an additional model parameter. Further, zero-inflated models in which overdispersion is assumed to be caused by an excessive number of zeros are discussed. On the other hand, extra spatial variability in the data is taken into account by adding correlated spatial random effects to the models. This approach allows for an underlying spatial dependency structure which is modelled using a conditional autoregressive prior based on Pettitt et al. in Stat Comput 12(4):353–367, (2002). In an application the presented models are used to analyse the number of invasive meningococcal disease cases in Germany in the year 2004. Models are compared according to the deviance information criterion (DIC) suggested by Spiegelhalter et al. in J R Stat Soc B64(4):583–640, (2002) and using proper scoring rules, see for example Gneiting and Raftery in Technical Report no. 463, University of Washington, (2004). We observe a rather high degree of overdispersion in the data which is captured best by the GP model when spatial effects are neglected. While the addition of spatial effects to the models allowing for overdispersion gives no or only little improvement, spatial Poisson models with spatially correlated or uncorrelated random effects are to be preferred over all other models according to the considered criteria.  相似文献   

15.
在非寿险分类费率厘定中,泊松回归模型是最常使用的索赔频率预测模型,但实际的索赔频率数据往往存在过离散特征,使泊松回归模型的结果缺乏可靠性.因此,讨论处理过离散问题的各种回归模型,包括负二项回归模型、泊松-逆高斯回归模型、泊松-对数正态回归模型、广义泊松回归模型、双泊松回归模型、混合负二项回归模型、混合二项回归模型、Delaporte回归模型和Sichel回归模型,并对其进行系统比较研究认为:这些模型都可以看做是对泊松回归模型的推广,可以用于处理各种不同过离散程度的索赔频率数据,从而改善费率厘定的效果;同时应用一组实际的汽车保险数据,讨论这些模型的具体应用.  相似文献   

16.
The purpose of this paper is to develop a new linear regression model for count data, namely generalized-Poisson Lindley (GPL) linear model. The GPL linear model is performed by applying generalized linear model to GPL distribution. The model parameters are estimated by the maximum likelihood estimation. We utilize the GPL linear model to fit two real data sets and compare it with the Poisson, negative binomial (NB) and Poisson-weighted exponential (P-WE) models for count data. It is found that the GPL linear model can fit over-dispersed count data, and it shows the highest log-likelihood, the smallest AIC and BIC values. As a consequence, the linear regression model from the GPL distribution is a valuable alternative model to the Poisson, NB, and P-WE models.  相似文献   

17.
18.
神经网络模型与车险索赔频率预测   总被引:1,自引:0,他引:1       下载免费PDF全文
孟生旺 《统计研究》2012,29(3):22-26
汽车保险广受社会关注,且在财产保险公司具有举足轻重的地位,因此汽车保险的索赔频率预测模型一直是非寿险精算理论和应用研究的重点之一。目前最为流行的索赔频率预测模型是广义线性模型,其中包括泊松回归、负二项回归和泊松-逆高斯回归等。本文基于一组实际的车险损失数据,对索赔频率的各种广义线性模型与神经网络模型和回归树模型进行了比较,得出了一些新的结论,即神经网络模型的拟合效果优于广义线性模型,在广义线性模型中,泊松回归的拟合效果优于负二项回归和泊松-逆高斯回归。线性回归模型的拟合效果最差,回归树模型的拟合效果略好于线性回归模型。  相似文献   

19.
In this paper we introduce a wide class of integer-valued stochastic processes that allows to take into consideration, simultaneously, relevant characteristics observed in count data namely zero inflation, overdispersion and conditional heteroscedasticity. This class includes, in particular, the compound Poisson, the zero-inflated Poisson and the zero-inflated negative binomial INGARCH models, recently proposed in literature. The main probabilistic analysis of this class of processes is here developed. Precisely, first- and second-order stationarity conditions are derived, the autocorrelation function is deduced and the strict stationarity is established in a large subclass. We also analyse in a particular model the existence of higher-order moments and deduce the explicit form for the first four cumulants, as well as its skewness and kurtosis.  相似文献   

20.
The study of count data time series has been active in the past decade, mainly in theory and model construction. There are different ways to construct time series models with a geometric autocorrelation function, and a given univariate margin such as negative binomial. In this paper, we investigate negative binomial time series models based on the binomial thinning and two other expectation thinning operators, and show how they differ in conditional variance or heteroscedasticity. Since the model construction is in terms of probability generating functions, typically, the relevant conditional probability mass functions do not have explicit forms. In order to do simulations, likelihood inference, graphical diagnostics and prediction, we use a numerical method for inversion of characteristic functions. We illustrate the numerical methods and compare the various negative binomial time series models for a real data example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号