首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we discuss the derivation of the first and second moments for the proposed small area estimators under a multivariate linear model for repeated measures data. The aim is to use these moments to estimate the mean-squared errors (MSE) for the predicted small area means as a measure of precision. At the first stage, we derive the MSE when the covariance matrices are known. At the second stage, a method based on parametric bootstrap is proposed for bias correction and for prediction error that reflects the uncertainty when the unknown covariance is replaced by its suitable estimator.  相似文献   

2.
Biased regression estimators have traditionally benn studied using the Mean Square Error (MSE) criterion. Usually these comparisons have been based on the sum of the MSE's of each of the individual parameters, i.e., a scaler valued measure that is the trace of the MSE matrix. However, since this summed MSE does not consider the covariance structure of the estimators, we propose the use of a Pitman Measure of Closeness (PMC) criterion (Keating and Gupta, 1984; Keating and Mason, 1985). In this paper we consider two versions of PMC. One of these compares the estimates and the other compares the resultant predicted values for 12 different regression estimators. These estimators represent three classes of estimators, namely, ridge, shrunken, and principal component estimators. The comparisons of these estimators using the PMC criteria are contrasted with the usual MSE criteria as well as the prediction mean square error. Included in the estimators is a relatively new estimator termed the generalized principal component estimator proposed by Jolliffe. This estimator has previously received little attention in the literature.  相似文献   

3.
Under the assumption that the exponential distribution is a reasonable model for a given population, some shrinkage estimators for the location parameter based on type 1 and type II censored samples have been derived. It is shown that these estimators dominate maximum likelihood estimators (MLE's) asymptotically under the mean squared error (MSE) criterion. A Monte Carlo study shows a significant improvement of our estimators over MLE's in terms of MSE for small samples.  相似文献   

4.
This paper considers several estimators for estimating the restricted ridge parameter estimators. A simulation study has been conducted to compare the performance of these estimators. Based on the simulation study we found that, increasing the correlation between the independent variables has positive effect on the mean square error (MSE). However, increasing the value of ρ has negative effect on MSE. When the sample size increases, the MSE decreases even when the correlation between the independent variables is large. Two real life examples have been considered to illustrate the performance of the estimators.  相似文献   

5.
Empirical Bayes (EB) estimates in general linear mixed models are useful for the small area estimation in the sense of increasing precision of estimation of small area means. However, one potential difficulty of EB is that the overall estimate for a larger geographical area based on a (weighted) sum of EB estimates is not necessarily identical to the corresponding direct estimate such as the overall sample mean. Another difficulty is that EB estimates yield over‐shrinking, which results in the sampling variance smaller than the posterior variance. One way to fix these problems is the benchmarking approach based on the constrained empirical Bayes (CEB) estimators, which satisfy the constraints that the aggregated mean and variance are identical to the requested values of mean and variance. In this paper, we treat the general mixed models, derive asymptotic approximations of the mean squared error (MSE) of CEB and provide second‐order unbiased estimators of MSE based on the parametric bootstrap method. These results are applied to natural exponential families with quadratic variance functions. As a specific example, the Poisson‐gamma model is dealt with, and it is illustrated that the CEB estimates and their MSE estimates work well through real mortality data.  相似文献   

6.
In this paper, we analytically derive the exact formula for the mean squared error (MSE) of two weighted average (WA) estimators for each individual regression coefficient. Further, we execute numerical evaluations to investigate small sample properties of the WA estimators, and compare the MSE performance of the WA estimators with the other shrinkage estimators and the usual OLS estimator. Our numerical results show that (1) the WA estimators have smaller MSE than the other shrinkage estimators and the OLS estimator over a wide region of parameter space; (2) the range where the relative MSE of the WA estimator is smaller than that of the OLS estimator gets narrower as the number of explanatory variables k increases.  相似文献   

7.
When there is an outlier in the data set, the efficiency of traditional methods decreases. In order to solve this problem, Kadilar et al. (2007) adapted Huber-M method which is only one of robust regression methods to ratio-type estimators and decreased the effect of outlier problem. In this study, new ratio-type estimators are proposed by considering Tukey-M, Hampel M, Huber MM, LTS, LMS and LAD robust methods based on the Kadilar et al. (2007). Theoretically, we obtain the mean square error (MSE) for these estimators. We compared with MSE values of proposed estimators and MSE values of estimators based on Huber-M and OLS methods. As a result of these comparisons, we observed that our proposed estimators give more efficient results than both Huber M approach which was proposed by Kadilar et al. (2007) and OLS approach. Also, under all conditions, all of the other proposed estimators except Lad method are more efficient than robust estimators proposed by Kadilar et al. (2007). And, these theoretical results are supported with the aid of a numerical example and simulation by basing on data that includes an outlier.  相似文献   

8.
In this paper, we consider the asymptotic expansion of the MSE of constrained James–Stein estimators. We provide an estimator of the MSE which is asymptotically valid upto O(m−1). A simulation study is undertaken to evaluate the performance of these estimators.  相似文献   

9.
In this paper, assuming that there exist omitted explanatory variables in the specified model, we derive the exact formula for the mean squared error (MSE) of a general family of shrinkage estimators for each individual regression coefficient. It is shown analytically that when our concern is to estimate each individual regression coefficient, the positive-part shrinkage estimators have smaller MSE than the original shrinkage estimators under some conditions even when the relevant regressors are omitted. Also, by numerical evaluations, we showed the effects of our theorem for several specific cases. It is shown that the positive-part shrinkage estimators have smaller MSE than the original shrinkage estimators for wide region of parameter space even when there exist omitted variables in the specified model.  相似文献   

10.
Abstract

This article proposes new regression-type estimators by considering Tukey-M, Hampel M, Huber MM, LTS, LMS and LAD robust methods and MCD and MVE robust covariance matrices in stratified sampling. Theoretically, we obtain the mean square error (MSE) for these estimators. We compare the efficiencies based on MSE equations, between the proposed estimators and the traditional combined and separate regression estimators. As a result of these comparisons, we observed that our proposed estimators give more efficient results than traditional approaches. And, these theoretical results are supported with the aid of numerical examples and simulation based on data sets that include outliers.  相似文献   

11.
This paper proposes a class of estimators for estimating ratio and product of two means of a finite population using information on two auxiliary characters. Asymptotic expression to terms of order 0(n-1) for bias and mean square error (MSE) of the proposed class of estimators are derived. Optimum conditions are obtained under which the proposed class of estimators has the minimum MSE. An empirical study is carried out to compare the performance of various estimators of ratio with the conventional estimators.  相似文献   

12.
The relative 'performances of improved ridge estimators and an empirical Bayes estimator are studied by means of Monte Carlo simulations. The empirical Bayes method is seen to perform consistently better in terms of smaller MSE and more accurate empirical coverage than any of the estimators considered here. A bootstrap method is proposed to obtain more reliable estimates of the MSE of ridge esimators. Some theorems on the bootstrap for the ridge estimators are also given and they are used to provide an analytical understanding of the proposed bootstrap procedure. Empirical coverages of the ridge estimators based on the proposed procedure are generally closer to the nominal coverage when compared to their earlier counterparts. In general, except for a few cases, these coverages are still less accurate than the empirical coverages of the empirical Bayes estimator.  相似文献   

13.
The problem of estimation of parameters of a mixture of degenerate and exponential distributions is considered. A new sampling scheme is proposed and the exact bias and the mean square error (MSE) of the maximum likelihood estimators of the parameters is derived. Moment estimators, their approximate biases and the MSE are obtained. Asymptotic distributions of the estimators are also obtained for both the cases.  相似文献   

14.
In this article, we propose some families of estimators for finite population variance of post-stratified sample mean using information on two auxiliary variables. The families of estimators are discussed in their optimum cases. The MSE of these estimators are derived to the first order of approximation. The percent relative efficiency of proposed families of estimators has been demonstrated with the numerical illustrations.  相似文献   

15.
Wavelet shrinkage estimation is an increasingly popular method for signal denoising and compression. Although Bayes estimators can provide excellent mean-squared error (MSE) properties, the selection of an effective prior is a difficult task. To address this problem, we propose empirical Bayes (EB) prior selection methods for various error distributions including the normal and the heavier-tailed Student t -distributions. Under such EB prior distributions, we obtain threshold shrinkage estimators based on model selection, and multiple-shrinkage estimators based on model averaging. These EB estimators are seen to be computationally competitive with standard classical thresholding methods, and to be robust to outliers in both the data and wavelet domains. Simulated and real examples are used to illustrate the flexibility and improved MSE performance of these methods in a wide variety of settings.  相似文献   

16.
The exact mean-squared error (MSE) of estimators of the variance in nonparametric regression based on quadratic forms is investigated. In particular, two classes of estimators are compared: Hall, Kay and Titterington's optimal difference-based estimators and a class of ordinary difference-based estimators which generalize methods proposed by Rice and Gasser, Sroka and Jennen-Steinmetz. For small sample sizes the MSE of the first estimator is essentially increased by the magnitude of the integrated first two squared derivatives of the regression function. It is shown that in many situations ordinary difference-based estimators are more appropriate for estimating the variance, because they control the bias much better and hence have a much better overall performance. It is also demonstrated that Rice's estimator does not always behave well. Data-driven guidelines are given to select the estimator with the smallest MSE.  相似文献   

17.
The paper considers a new family of explicit or fully operational two-stage Stein or hierarchial information (2SHI) estimators for linear regression models, and provides an expression for the difference between the risks of these estimators and the usual Stein-rule estimator when the variance of the disturbance is small. The condition under which the 2SHI estimators have smaller average MSE than the Stein-rule estimator is also given.  相似文献   

18.
Shrinkage estimator is a commonly applied solution to the general problem caused by multicollinearity. Recently, the ridge regression (RR) estimators for estimating the ridge parameter k in the negative binomial (NB) regression have been proposed. The Jackknifed estimators are obtained to remedy the multicollinearity and reduce the bias. A simulation study is provided to evaluate the performance of estimators. Both mean squared error (MSE) and the percentage relative error (PRE) are considered as the performance criteria. The simulated result indicated that some of proposed Jackknifed estimators should be preferred to the ML method and ridge estimators to reduce MSE and bias.  相似文献   

19.
In this paper, we consider a regression model and propose estimators which are the weighted averages of two estimators among three estimators; the Stein-rule (SR), the minimum mean squared error (MMSE), and the adjusted minimum mean-squared error (AMMSE) estimators. It is shown that one of the proposed estimators has smaller mean-squared error (MSE) than the positive-part Stein-rule (PSR) estimator over a moderate region of parameter space when the number of the regression coefficients is small (i.e., 3), and its MSE performance is comparable to the PSR estimator even when the number of the regression coefficients is not so small.  相似文献   

20.
Greenwich and Jahr-Schaffrath (1995) introduced a new index C pp a simple transformation of the index C pm , which provides an uncontaminated separation between information concerning process accuracy and process precision. Under the assumption of normality, we first show that the estimators of C pp proposed by Greenwich and Jahr-Schaffrath (1995) are UMVU estimators. We also show that for the inaccuracy index, the variance of the unbiased estimator is smaller than the mean squared error (MSE) of the natural (biased) estimator for n > 3. In addition, we obtain the r-th moment and the probability density function of these estimators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号