首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 258 毫秒
1.
In this note, we present alternative derivations for the probability that an individual order statistic is closest to the target parameter among all order statistics from a complete random sample. This approach is simpler than the geometric arguments used earlier. We also provide a simple direct proof for the symmetry property of the simultaneous closeness probabilities among order statistics for the estimation of percentiles from a symmetric family. Finally, we offer an alternative simpler proof for the result that sample medians from larger odd sample sizes are Pitman closer to the population median than sample medians from smaller odd sample sizes.  相似文献   

2.
A modified normal-based approximation for calculating the percentiles of a linear combination of independent random variables is proposed. This approximation is applicable in situations where expectations and percentiles of the individual random variables can be readily obtained. The merits of the approximation are evaluated for the chi-square and beta distributions using Monte Carlo simulation. An approximation to the percentiles of the ratio of two independent random variables is also given. Solutions based on the approximations are given for some classical problems such as interval estimation of the normal coefficient of variation, survival probability, the difference between or the ratio of two binomial proportions, and for some other problems. Furthermore, approximation to the percentiles of a doubly noncentral F distribution is also given. For all the problems considered, the approximation provides simple satisfactory solutions. Two examples are given to show applications of the approximation.  相似文献   

3.
Estimators of percentiles of location and scale parameter distributions are optimized based on Pitman closeness and absolute risk. A median unbiased (MU) estimator and a minimum risk (MR) estimator are shown to exist within a class of estimators, and to depend upon the medians of two completely specified distributions.  相似文献   

4.
This paper introduces W-tests for assessing homogeneity in mixtures of discrete probability distributions. A W-test statistic depends on the data solely through parameter estimators and, if a penalized maximum likelihood estimation framework is used, has a tractable asymptotic distribution under the null hypothesis of homogeneity. The large-sample critical values are quantiles of a chi-square distribution multiplied by an estimable constant for which we provide an explicit formula. In particular, the estimation of large-sample critical values does not involve simulation experiments or random field theory. We demonstrate that W-tests are generally competitive with a benchmark test in terms of power to detect heterogeneity. Moreover, in many situations, the large-sample critical values can be used even with small to moderate sample sizes. The main implementation issue (selection of an underlying measure) is thoroughly addressed, and we explain why W-tests are well-suited to problems involving large and online data sets. Application of a W-test is illustrated with an epidemiological data set.  相似文献   

5.
Trimmed L-moments, defined by Elamir and Seheult [2003. Trimmed L-moments. Comput. Statist. Data Anal. 43, 299–314], summarize the shape of probability distributions or data samples in a way that remains viable for heavy-tailed distributions, even those for which the mean may not exist. We derive some further theoretical results concerning trimmed L-moments: a relation with the expansion of the quantile function as a weighted sum of Jacobi polynomials; the bounds that must be satisfied by trimmed L-moments; recurrences between trimmed L-moments with different degrees of trimming; and the asymptotic distributions of sample estimators of trimmed L-moments. We also give examples of how trimmed L-moments can be used, analogously to L-moments, in the analysis of heavy-tailed data. Examples include identification of distributions using a trimmed L-moment ratio diagram, shape parameter estimation for the generalized Pareto distribution, and fitting generalized Pareto distributions to a heavy-tailed data sample of computer network traffic.  相似文献   

6.
In this article, Pitman closeness of sample order statistics to population quantiles of a location-scale family of distributions is discussed. Explicit expressions are derived for some specific families such as uniform, exponential, and power function. Numerical results are then presented for these families for sample sizes n = 10,15, and for the choices of p = 0.10, 0.25, 0.75, 0.90. The Pitman-closest order statistic is also determined in these cases and presented.  相似文献   

7.

A goodness-of-fit technique for random samples from the exponential distribution based on the sample Lorenz curve is adapted for use in the exponential order statistic (EOS) model. In the EOS model, only those observations in a random sample from the exponential distribution of unknown size N that are less than some known stopping time T are observable. The model is known as the Jelinski-Moranda model in software reliability, where it is used to estimate the number of bugs in software during development. Distributional results are derived for the distance between the sample Lorenz curve and the population Lorenz curve so that it can be used as a goodness-of-fit test statistic. Simulations show that the test has good power against several alternative distributions. Simulations also indicate that in some cases, model misspecification leads to poor parameter estimation. A plotting procedure provides a means of graphical assessment of fit.  相似文献   

8.
Very often, in psychometric research, as in educational assessment, it is necessary to analyze item response from clustered respondents. The multiple group item response theory (IRT) model proposed by Bock and Zimowski [12] provides a useful framework for analyzing such type of data. In this model, the selected groups of respondents are of specific interest such that group-specific population distributions need to be defined. The usual assumption for parameter estimation in this model, which is that the latent traits are random variables following different symmetric normal distributions, has been questioned in many works found in the IRT literature. Furthermore, when this assumption does not hold, misleading inference can result. In this paper, we consider that the latent traits for each group follow different skew-normal distributions, under the centered parameterization. We named it skew multiple group IRT model. This modeling extends the works of Azevedo et al. [4], Bazán et al. [11] and Bock and Zimowski [12] (concerning the latent trait distribution). Our approach ensures that the model is identifiable. We propose and compare, concerning convergence issues, two Monte Carlo Markov Chain (MCMC) algorithms for parameter estimation. A simulation study was performed in order to evaluate parameter recovery for the proposed model and the selected algorithm concerning convergence issues. Results reveal that the proposed algorithm recovers properly all model parameters. Furthermore, we analyzed a real data set which presents asymmetry concerning the latent traits distribution. The results obtained by using our approach confirmed the presence of negative asymmetry for some latent trait distributions.  相似文献   

9.
The estimation problem of a permutation parameter on the basis of a random sample of increasing size is considered. A necessary and sufficient condition for the existence of an estimator, asymptotically fully efficient for two different distributions families, is derived. We also study the application of this result to cyclic groups of order two and three.  相似文献   

10.
In 2010 Zenga introduced a new three-parameter model for distributions by size that can be used to represent income, wealth, financial and actuarial variables. This paper proposes a summary of its main properties, followed by a focus on the interpretation of the parameters in terms of inequality. The scale parameter μ is equal to the expectation, and it does not affect the inequality, while the two shape parameters α and θ are inverse and direct inequality indicators respectively. This result is obtained through stochastic orders based on inequality curves. A procedure to generate a random sample from Zenga distribution is also proposed. The second part of this article looks at the parameter estimation. Analytical solution of method of moments is obtained. This result is used as a starting point of numerical procedures to obtain maximum likelihood estimates both on ungrouped and grouped data. In the application, three empirical income distributions are considered and the aforementioned estimates are evaluated. A comparison with other well-known models is provided, by the evaluation of three goodness-of-fit indexes.  相似文献   

11.
In this paper, we focus on Pitman closeness probabilities when the estimators are symmetrically distributed about the unknown parameter θ. We first consider two symmetric estimators θ?1 and θ?2 and obtain necessary and sufficient conditions for θ?1 to be Pitman closer to the common median θ than θ?2. We then establish some properties in the context of estimation under the Pitman closeness criterion. We define Pitman closeness probability which measures the frequency with which an individual order statistic is Pitman closer to θ than some symmetric estimator. We show that, for symmetric populations, the sample median is Pitman closer to the population median than any other independent and symmetrically distributed estimator of θ. Finally, we discuss the use of Pitman closeness probabilities in the determination of an optimal ranked set sampling scheme (denoted by RSS) for the estimation of the population median when the underlying distribution is symmetric. We show that the best RSS scheme from symmetric populations in the sense of Pitman closeness is the median and randomized median RSS for the cases of odd and even sample sizes, respectively.  相似文献   

12.
Comparisons of best linear unbiased estimators with some other prominent estimators have been carried out over the last 50 years since the ground breaking work of Lloyd [E.H. Lloyd, Least squares estimation of location and scale parameters using order statistics, Biometrika 39 (1952), pp. 88–95]. These comparisons have been made under many different criteria across different parametric families of distributions. A noteworthy one is by Nagaraja [H.N. Nagaraja, Comparison of estimators and predictors from two-parameter exponential distribution, Sankhyā Ser. B 48 (1986), pp. 10–18], who made a comparison of best linear unbiased (BLUE) and best linear invariant (BLIE) estimators in the case of exponential distribution. In this paper, continuing along the same lines by assuming a Type II right censored sample from a scaled-exponential distribution, we first compare BLUE and BLIE of the exponential mean parameter in terms of Pitman closeness (nearness) criterion. We show that the BLUE is always Pitman closer than the BLIE. Next, we introduce the notions of Pitman monotonicity and Pitman consistency, and then establish that both BLUE and BLIE possess these two properties.  相似文献   

13.
Well-known estimation methods such as conditional least squares, quasilikelihood and maximum likelihood (ML) can be unified via a single framework of martingale estimating functions (MEFs). Asymptotic distributions of estimates for ergodic processes use constant norm (e.g. square root of the sample size) for asymptotic normality. For certain non-ergodic-type applications, however, such as explosive autoregression and super-critical branching processes, one needs a random norm in order to get normal limit distributions. In this paper, we are concerned with non-ergodic processes and investigate limit distributions for a broad class of MEFs. Asymptotic optimality (within a certain class of non-ergodic MEFs) of the ML estimate is deduced via establishing a convolution theorem using a random norm. Applications to non-ergodic autoregressive processes, generalized autoregressive conditional heteroscedastic-type processes, and super-critical branching processes are discussed. Asymptotic optimality in terms of the maximum random limiting power regarding large sample tests is briefly discussed.  相似文献   

14.
We consider the estimation of the 90 and 95 percentiles of a normal distribution and also the construction of one-sided 90% and 95% -normal ranges. Three methods are proposed -the sample percentile method, and two based on kernel estimates of the density function using Fryer's method and the leaving-one-out method for choosing a smoothing parameter.

A simulation study compares the methods in terms of bias, variance and mean square error of the population percentile estimates and of the eovers of the consequent normal ranges.  相似文献   

15.
Continuing increases in computing power and availability mean that many maximum likelihood estimation (MLE) problems previously thought intractable or too computationally difficult can now be tackled numerically. However, ML parameter estimation for distributions whose only analytical expression is as quantile functions has received little attention. Numerical MLE procedures for parameters of new families of distributions, the g-and-k and the generalized g-and-h distributions, are presented and investigated here. Simulation studies are included, and the appropriateness of using asymptotic methods examined. Because of the generality of these distributions, the investigations are not only into numerical MLE for these distributions, but are also an initial investigation into the performance and problems for numerical MLE applied to quantile-defined distributions in general. Datasets are also fitted using the procedures here. Results indicate that sample sizes significantly larger than 100 should be used to obtain reliable estimates through maximum likelihood.  相似文献   

16.
17.
The Langevin (or von Mises-Fisher) distribution of random vector x on the unit sphere ωq in Rq has a density proportional to exp κμ'x where μ'x is the scalar product of x with the unit modal vector μ and κ?0 is a concentration parameter. This paper studies estimation and tests for a wide variety of situations when the sample sizes are large. Geometrically simple test statistics are given for many sample problems even when the populations may have unequal concentration parameters.  相似文献   

18.
Two families of parameter estimation procedures for the stable laws based on a variant of the characteristic function are provided. The methodology which produces viable computational procedures for the stable laws is generally applicable to other families of distributions across a variety of settings. Both families of procedures may be described as a modified weighted chi-squared minimization procedure, and both explicitly take account of constraints on the parameter space. Influence func-tions for and efficiencies of the estimators are given. If x1, x2, …xn random sample from an unknown distribution F , a method for determining the stable law to which F is attracted is developed. Procedures for regression and autoregres-sion with stable error structure are provided. A number of examples are given.  相似文献   

19.
The nonparametric density function estimation using sample observations which are contaminated with random noise is studied. The particular form of contamination under consideration is Y = X + Z, where Y is an observable random variableZ is a random noise variable with known distribution, and X is an absolutely continuous random variable which cannot be observed directly. The finite sample size performance of a strongly consistent estimator for the density function of the random variable X is illustrated for different distributions. The estimator uses Fourier and kernel function estimation techniques and allows the user to choose constants which relate to bandwidth windows and limits on integration and which greatly affect the appearance and properties of the estimates. Numerical techniques for computation of the estimated densities and for optimal selection of the constant are given.  相似文献   

20.
Abstract

In this paper, a change-point linear model with randomly censored data is investigated. We propose the least absolute deviation estimation procedure for regression and change-point parameters simultaneously. The asymptotic properties of the change-point and regression parameter estimators are obtained. We show that the resulting regression parameter estimator is asymptotically normal, and the change-point estimator converges weakly to the minimizer of a given random process. The extensive simulation studies and the analysis of an acute myocardial infarction data set are conducted to illustrate the finite sample performance of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号