首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
This study investigates the exact D-optimal designs of the linear log contrast model using the mixture experiment suggested by Aitchison and Bacon-Shone (1984) and the design space restricted by Lim (1987) and Chan (1988). Results show that for three ingredients, there are six extreme points that can be divided into two non-intersect sets S1 and S2. An exact N-point D  -optimal design for N=3p+q,p≥1,1≤q≤2N=3p+q,p1,1q2 arranges equal weight n/N,0≤n≤pn/N,0np at the points of S1 (S2) and puts the remaining weight (N−3n)/N(N3n)/N on the points of S2 (S1) as evenly as possible. For four ingredients and N=6p+q,p≥1,1≤q≤5N=6p+q,p1,1q5, an exact N-point design that distributes the weights as evenly as possible among the six supports of the approximate D-optimal design is exact D-optimal.  相似文献   

2.
3.
This paper deals with sparse K2×J(J>2)K2×J(J>2) tables. Projection-method Mantel–Haenszel (MH) estimators of the common odds ratios have been proposed for K2×JK2×J tables, which include Greenland's generalized MH estimator as a special case. The method projects log-transformed MH estimators for all K2×2K2×2 subtables, which were called naive MH estimators, onto a linear space spanned by log odds ratios. However, for sparse tables it is often the case that naive MH estimators are unable to be computed. In this paper we introduce alternative naive MH estimators using a graph that represents K2×JK2×J tables, and apply the projection to these alternative estimators. The idea leads to infinitely many reasonable estimators and we propose a method to choose the optimal one by solving a quadratic optimization problem induced by the graph, where some graph-theoretic arguments play important roles to simplify the optimization problem. An illustration is given using data from a case–control study. A simulation study is also conducted, which indicates that the MH estimator tends to have a smaller mean squared error than the MH estimator previously suggested and the conditional maximum likelihood estimator for sparse tables.  相似文献   

4.
Consider a mixture problem consisting of k classes. Suppose we observe an s-dimensional random vector X   whose distribution is specified by the relations P(X∈A|Y=i)=Pi(A)P(XA|Y=i)=Pi(A), where Y   is an unobserved class identifier defined on {1,…,k}{1,,k}, having distribution P(Y=i)=piP(Y=i)=pi. Assuming the distributions PiPi having a common covariance matrix, elegant identities are presented that connect the matrix of Fisher information in Y   on the parameters p1,…,pkp1,,pk, the matrix of linear information in X, and the Mahalanobis distances between the pairs of P  's. Since the parameters are not free, the information matrices are singular and the technique of generalized inverses is used. A matrix extension of the Mahalanobis distance and its invariant forms are introduced that are of interest in their own right. In terms of parameter estimation, the results provide an independent of the parameter upper bound for the loss of accuracy by esimating p1,…,pkp1,,pk from a sample of XXs, as compared with the ideal estimator based on a random sample of YYs.  相似文献   

5.
Let (X, Y  ) be a Rd×R-valuedRd×R-valued random vector. In regression analysis one wants to estimate the regression function m(x)?E(Y|X=x)m(x)?E(Y|X=x) from a data set. In this paper we consider the rate of convergence for the k-nearest neighbor estimators in case that X   is uniformly distributed on [0,1]d[0,1]d, Var(Y|X=x)Var(Y|X=x) is bounded, and m is (p, C)-smooth. It is an open problem whether the optimal rate can be achieved by a k  -nearest neighbor estimator for 1<p≤1.51<p1.5. We solve the problem affirmatively. This is the main result of this paper. Throughout this paper, we assume that the data is independent and identically distributed and as an error criterion we use the expected L2 error.  相似文献   

6.
7.
8.
In experiments in which the response to a treatment can be affected by other treatments, the interference model with neighbor effects is usually used. It is known that circular neighbor balanced designs (CNBDs) are universally optimal under such a model if the neighbor effects are fixed (Druilhet, 1999) or random (4 and 7). However, such designs cannot exist for every combination of design parameters. In the class of block designs with the same number of treatments as experimental units per block, a CNBD cannot exist if the number of blocks, b  , is equal to p(t−1)±1p(t1)±1, where p is a positive integer and t is the number of treatments. Filipiak et al. (2008) gave the structure of the left-neighboring matrix of E-optimal complete block designs with p  =1 under the model with fixed neighbor effects. The purpose of this paper is to generalize E-optimality results for designs with p∈NpN assuming random neighbor effects.  相似文献   

9.
This paper deals with the distributions of test statistics for the number of useful discriminant functions and the characteristic roots in canonical discriminant analysis. These asymptotic distributions have been extensively studied when the number p   of variables is fixed, the number q+1q+1 of groups is fixed, and the sample size N tends to infinity. However, these approximations become increasingly inaccurate as the value of p increases for a fixed value of N. On the other hand, we encounter to analyze high-dimensional data such that p is large compared to n. The purpose of the present paper is to derive asymptotic distributions of these statistics in a high-dimensional framework such that q   is fixed, p→∞p, m=n-p+q→∞m=n-p+q, and p/n→c∈(0,1)p/nc(0,1), where n=N-q-1n=N-q-1. Numerical simulation revealed that our new asymptotic approximations are more accurate than the classical asymptotic approximations in a considerably wide range of (n,p,q)(n,p,q).  相似文献   

10.
Suppose that we have a linear regression model Y=Xβ+ν0(X)εY=Xβ+ν0(X)ε with random error εε, where X is a random design variable and is observed completely, and Y is the response variable and some Y-values are missing at random (MAR). In this paper, based on the ‘complete’ data set for Y after inverse probability weighted imputation, we construct empirical likelihood statistics on EY   and ββ which have the χ2χ2-type limiting distributions under some new conditions compared with Xue (2009). Our results broaden the applicable scope of the approach combined with Xue (2009).  相似文献   

11.
12.
A popular measure to assess 2-level supersaturated designs is the E(s2)E(s2) criterion. In this paper, improved lower bounds on E(s2)E(s2) are obtained. The same improvement has recently been established by Ryan and Bulutoglu [2007. E(s2)E(s2)-optimal supersaturated designs with good minimax properties. J. Statist. Plann. Inference 137, 2250–2262]. However, our analysis provides more details on precisely when an improvement is possible, which is lacking in Ryan and Bulutoglu [2007. E(s2)E(s2)-optimal supersaturated designs with good minimax properties. J. Statist. Plann. Inference 137, 2250–2262]. The equivalence of the bounds obtained by Butler et al. [2001. A general method of constructing E(s2)E(s2)-optimal supersaturated designs. J. Roy. Statist. Soc. B 63, 621–632] (in the cases where their result applies) and those obtained by Bulutoglu and Cheng [2004. Construction of E(s2)E(s2)-optimal supersaturated designs. Ann. Statist. 32, 1662–1678] is established. We also give two simple methods of constructing E(s2)E(s2)-optimal designs.  相似文献   

13.
We deal with the problem of classifying a new observation vector into one of two known multivariate normal distributions when the dimension p and training sample size N   are both large with p<Np<N. Modified linear discriminant analysis (MLDA) was suggested by Xu et al. [10]. Error rate of MLDA is smaller than the one of LDA. However, if p and N   are moderately large, error rate of MLDA is close to the one of LDA. These results are conditional ones, so we should investigate whether they hold unconditionally. In this paper, we give two types of asymptotic approximations of expected probability of misclassification (EPMC) for MLDA as n→∞n with p=O(nδ)p=O(nδ), 0<δ<10<δ<1. The one of two is the same as the asymptotic approximation of LDA, and the other is corrected version of the approximation. Simulation reveals that the modified version of approximation has good accuracy for the case in which p and N are moderately large.  相似文献   

14.
In this paper, we consider the prediction problem in multiple linear regression model in which the number of predictor variables, p, is extremely large compared to the number of available observations, n  . The least-squares predictor based on a generalized inverse is not efficient. We propose six empirical Bayes estimators of the regression parameters. Three of them are shown to have uniformly lower prediction error than the least-squares predictors when the vector of regressor variables are assumed to be random with mean vector zero and the covariance matrix (1/n)XtX(1/n)XtX where Xt=(x1,…,xn)Xt=(x1,,xn) is the p×np×n matrix of observations on the regressor vector centered from their sample means. For other estimators, we use simulation to show its superiority over the least-squares predictor.  相似文献   

15.
Using special iterated function systems (IFS) Fredricks et al. (2005) constructed two-dimensional copulas with fractal supports and showed that for every s∈(1,2)s(1,2) there exists a copula A whose support has Hausdorff dimension s. In the current paper we present a stronger version and prove that the same result holds for the subclass of idempotent copulas. Additionally we show that every doubly stochastic idempotent matrix N (having neither minimum nor maximum rank) induces a family of idempotent copulas such that, firstly, the corresponding Markov kernels transform according to N   and, secondly, the set of Hausdorff dimensions of the supports of elements of the family covers (1,2). Furthermore we generalize the IFS approach to arbitrary dimensions d≥2d2 and show that for every s∈(1,d)s(1,d) we can find a d-dimensional copula whose support has Hausdorff dimension s.  相似文献   

16.
The paper studies the three-parameter generalization of the logarithmic distribution that is obtained as the cluster distribution for the generalized Euler distribution. The diagnostic statistic, R(x)=xpx/[(x-1)px-1]R(x)=xpx/[(x-1)px-1], is constant for the logarithmic distribution. For the new distribution it can decrease, stay constant, or increase as x increases. The relative values of the extra parameters determine the flatness/hollowness of the distribution and its tail behaviour. Kemp's q-logarithmic distribution and the Euler cluster distribution are special cases. Fitted data sets illustrate the properties of the distribution and its limiting forms.  相似文献   

17.
Consider a positive random variable of interest Y depending on a covariate X, and a random observation time T independent of Y given X. Assume that the only knowledge available about Y is its current status at time T  : δ=I{YT}δ=I{YT} with II the indicator function. This paper presents a procedure to estimate the conditional cumulative distribution function F of Y given X   from an independent identically distributed sample of (X,T,δ)(X,T,δ).  相似文献   

18.
We consider the estimation of smooth regression functions in a class of conditionally parametric co-variate-response models. Independent and identically distributed observations are available from the distribution of (Z,X)(Z,X), where Z is a real-valued co-variate with some unknown distribution, and the response X conditional on Z   is distributed according to the density p(·,ψ(Z))p(·,ψ(Z)), where p(·,θ)p(·,θ) is a one-parameter exponential family. The function ψψ is a smooth monotone function. Under this formulation, the regression function E(X|Z)E(X|Z) is monotone in the co-variate Z   (and can be expressed as a one–one function of ψψ); hence the term “monotone response model”. Using a penalized least squares approach that incorporates both monotonicity and smoothness, we develop a scheme for producing smooth monotone estimates of the regression function and also the function ψψ across this entire class of models. Point-wise asymptotic normality of this estimator is established, with the rate of convergence depending on the smoothing parameter. This enables construction of Wald-type (point-wise) as well as pivotal confidence sets for ψψ and also the regression function. The methodology is extended to the general heteroscedastic model, and its asymptotic properties are discussed.  相似文献   

19.
20.
When random variables do not take discrete values, observed data are often the rounded values of continuous random variables. Errors caused by rounding of data are often neglected by classical statistical theories. While some pioneers have identified and made suggestions to rectify the problem, few suitable approaches were proposed. In this paper, we propose an approximate MLE (AMLE) procedure to estimate the parameters and discuss the consistency and asymptotic normality of the estimates. For our illustration, we shall consider the estimates of the parameters in AR(p)AR(p) and MA(q)MA(q) models for rounded data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号