首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main goal in small area estimation is to use models to ‘borrow strength’ from the ensemble because the direct estimates of small area parameters are generally unreliable. However, model-based estimates from the small areas do not usually match the value of the single estimate for the large area. Benchmarking is done by applying a constraint, internally or externally, to ensure that the ‘total’ of the small areas matches the ‘grand total’. This is particularly useful because it is difficult to check model assumptions owing to the sparseness of the data. We use a Bayesian nested error regression model, which incorporates unit-level covariates and sampling weights, to develop a method to internally benchmark the finite population means of small areas. We use two examples to illustrate our method. We also perform a simulation study to further assess the properties of our method.  相似文献   

2.
For small area estimation of area‐level data, the Fay–Herriot model is extensively used as a model‐based method. In the Fay–Herriot model, it is conventionally assumed that the sampling variances are known, whereas estimators of sampling variances are used in practice. Thus, the settings of knowing sampling variances are unrealistic, and several methods are proposed to overcome this problem. In this paper, we assume the situation where the direct estimators of the sampling variances are available as well as the sample means. Using this information, we propose a Bayesian yet objective method producing shrinkage estimation of both means and variances in the Fay–Herriot model. We consider the hierarchical structure for the sampling variances, and we set uniform prior on model parameters to keep objectivity of the proposed model. For validity of the posterior inference, we show under mild conditions that the posterior distribution is proper and has finite variances. We investigate the numerical performance through simulation and empirical studies.  相似文献   

3.
Marshall and Olkin [1967. A multivariate exponential distribution. J. Amer. Statist. Assoc. 62, 30–44], introduced a bivariate distribution with exponential marginals, which generalizes the simple case of a bivariate random variable with independent exponential components. The distribution is popular under the name ‘Marshall–Olkin distribution’, and has been extended to the multivariate case. L2-type statistics are constructed for testing the composite null hypothesis of the Marshall–Olkin distribution with unspecified parameters. The test statistics utilize the empirical Laplace transform with consistently estimated parameters. Asymptotic properties pertaining to the null distribution of the test statistic and the consistency of the test are investigated. Theoretical results are accompanied by a simulation study, and real-data applications.  相似文献   

4.
The purpose of this paper is to develop a Bayesian approach for log-Birnbaum–Saunders Student-t regression models under right-censored survival data. Markov chain Monte Carlo (MCMC) methods are used to develop a Bayesian procedure for the considered model. In order to attenuate the influence of the outlying observations on the parameter estimates, we present in this paper Birnbaum–Saunders models in which a Student-t distribution is assumed to explain the cumulative damage. Also, some discussions on the model selection to compare the fitted models are given and case deletion influence diagnostics are developed for the joint posterior distribution based on the Kullback–Leibler divergence. The developed procedures are illustrated with a real data set.  相似文献   

5.
The exponential–Poisson (EP) distribution with scale and shape parameters β>0 and λ∈?, respectively, is a lifetime distribution obtained by mixing exponential and zero-truncated Poisson models. The EP distribution has been a good alternative to the gamma distribution for modelling lifetime, reliability and time intervals of successive natural disasters. Both EP and gamma distributions have some similarities and properties in common, for example, their densities may be strictly decreasing or unimodal, and their hazard rate functions may be decreasing, increasing or constant depending on their shape parameters. On the other hand, the EP distribution has several interesting applications based on stochastic representations involving maximum and minimum of iid exponential variables (with random sample size) which make it of distinguishable scientific importance from the gamma distribution. Given the similarities and different scientific relevance between these models, one question of interest is how to discriminate them. With this in mind, we propose a likelihood ratio test based on Cox's statistic to discriminate the EP and gamma distributions. The asymptotic distribution of the normalized logarithm of the ratio of the maximized likelihoods under two null hypotheses – data come from EP or gamma distributions – is provided. With this, we obtain the probabilities of correct selection. Hence, we propose to choose the model that maximizes the probability of correct selection (PCS). We also determinate the minimum sample size required to discriminate the EP and gamma distributions when the PCS and a given tolerance level based on some distance are before stated. A simulation study to evaluate the accuracy of the asymptotic probabilities of correct selection is also presented. The paper is motivated by two applications to real data sets.  相似文献   

6.
In this paper, we propose a defective model induced by a frailty term for modeling the proportion of cured. Unlike most of the cure rate models, defective models have advantage of modeling the cure rate without adding any extra parameter in model. The introduction of an unobserved heterogeneity among individuals has bring advantages for the estimated model. The influence of unobserved covariates is incorporated using a proportional hazard model. The frailty term assumed to follow a gamma distribution is introduced on the hazard rate to control the unobservable heterogeneity of the patients. We assume that the baseline distribution follows a Gompertz and inverse Gaussian defective distributions. Thus we propose and discuss two defective distributions: the defective gamma-Gompertz and gamma-inverse Gaussian regression models. Simulation studies are performed to verify the asymptotic properties of the maximum likelihood estimator. Lastly, in order to illustrate the proposed model, we present three applications in real data sets, in which one of them we are using for the first time, related to a study about breast cancer in the A.C.Camargo Cancer Center, São Paulo, Brazil.  相似文献   

7.
Small area estimators are often based on linear mixed models under the assumption that relationships among variables are stationary across the area of interest (Fay–Herriot models). This hypothesis is patently violated when the population is divided into heterogeneous latent subgroups. In this paper we propose a local Fay–Herriot model assisted by a Simulated Annealing algorithm to identify the latent subgroups of small areas. The value minimized through the Simulated Annealing algorithm is the sum of the estimated mean squared error (MSE) of the small area estimates. The technique is employed for small area estimates of erosion on agricultural land within the Rathbun Lake Watershed (IA, USA). The results are promising and show that introducing local stationarity in a small area model may lead to useful improvements in the performance of the estimators.  相似文献   

8.
We introduce an omnibus goodness-of-fit test for statistical models for the conditional distribution of a random variable. In particular, this test is useful for assessing whether a regression model fits a data set on all its assumptions. The test is based on a generalization of the Cramér–von Mises statistic and involves a local polynomial estimator of the conditional distribution function. First, the uniform almost sure consistency of this estimator is established. Then, the asymptotic distribution of the test statistic is derived under the null hypothesis and under contiguous alternatives. The extension to the case where unknown parameters appear in the model is developed. A simulation study shows that the test has good power against some common departures encountered in regression models. Moreover, its power is comparable to that of other nonparametric tests designed to examine only specific departures.  相似文献   

9.
Shared frailty models are often used to model heterogeneity in survival analysis. There are certain assumptions about the baseline distribution and distribution of frailty. In this paper, four shared frailty models with frailty distribution gamma, inverse Gaussian, compound Poisson, and compound negative binomial with exponential power as baseline distribution are proposed. These models are fitted using Markov Chain Monte Carlo methods. These models are illustrated with a real life bivariate survival data set of McGilchrist and Aisbett (1991) related to kidney infection, and the best model is suggested for the data using different model comparison criteria.  相似文献   

10.
Nonlinear mixed‐effects models are being widely used for the analysis of longitudinal data, especially from pharmaceutical research. They use random effects which are latent and unobservable variables so the random‐effects distribution is subject to misspecification in practice. In this paper, we first study the consequences of misspecifying the random‐effects distribution in nonlinear mixed‐effects models. Our study is focused on Gauss‐Hermite quadrature, which is now the routine method for calculation of the marginal likelihood in mixed models. We then present a formal diagnostic test to check the appropriateness of the assumed random‐effects distribution in nonlinear mixed‐effects models, which is very useful for real data analysis. Our findings show that the estimates of fixed‐effects parameters in nonlinear mixed‐effects models are generally robust to deviations from normality of the random‐effects distribution, but the estimates of variance components are very sensitive to the distributional assumption of random effects. Furthermore, a misspecified random‐effects distribution will either overestimate or underestimate the predictions of random effects. We illustrate the results using a real data application from an intensive pharmacokinetic study.  相似文献   

11.
After initiation of treatment, HIV viral load has multiphasic changes, which indicates that the viral decay rate is a time-varying process. Mixed-effects models with different time-varying decay rate functions have been proposed in literature. However, there are two unresolved critical issues: (i) it is not clear which model is more appropriate for practical use, and (ii) the model random errors are commonly assumed to follow a normal distribution, which may be unrealistic and can obscure important features of within- and among-subject variations. Because asymmetry of HIV viral load data is still noticeable even after transformation, it is important to use a more general distribution family that enables the unrealistic normal assumption to be relaxed. We developed skew-elliptical (SE) Bayesian mixed-effects models by considering the model random errors to have an SE distribution. We compared the performance among five SE models that have different time-varying decay rate functions. For each model, we also contrasted the performance under different model random error assumptions such as normal, Student-t, skew-normal, or skew-t distribution. Two AIDS clinical trial datasets were used to illustrate the proposed models and methods. The results indicate that the model with a time-varying viral decay rate that has two exponential components is preferred. Among the four distribution assumptions, the skew-t and skew-normal models provided better fitting to the data than normal or Student-t model, suggesting that it is important to assume a model with a skewed distribution in order to achieve reasonable results when the data exhibit skewness.  相似文献   

12.
In this article, a general approach to latent variable models based on an underlying generalized linear model (GLM) with factor analysis observation process is introduced. We call these models Generalized Linear Factor Models (GLFM). The observations are produced from a general model framework that involves observed and latent variables that are assumed to be distributed in the exponential family. More specifically, we concentrate on situations where the observed variables are both discretely measured (e.g., binomial, Poisson) and continuously distributed (e.g., gamma). The common latent factors are assumed to be independent with a standard multivariate normal distribution. Practical details of training such models with a new local expectation-maximization (EM) algorithm, which can be considered as a generalized EM-type algorithm, are also discussed. In conjunction with an approximated version of the Fisher score algorithm (FSA), we show how to calculate maximum likelihood estimates of the model parameters, and to yield inferences about the unobservable path of the common factors. The methodology is illustrated by an extensive Monte Carlo simulation study and the results show promising performance.  相似文献   

13.
Small area estimators in linear models are typically expressed as a convex combination of direct estimators and synthetic estimators from a suitable model. When auxiliary information used in the model is measured with error, a new estimator, accounting for the measurement error in the covariates, has been proposed in the literature. Recently, for area‐level model, Ybarra & Lohr (Biometrika, 95, 2008, 919) suggested a suitable modification to the estimates of small area means based on Fay & Herriot (J. Am. Stat. Assoc., 74, 1979, 269) model where some of the covariates are measured with error. They used a frequentist approach based on the method of moments. Adopting a Bayesian approach, we propose to rewrite the measurement error model as a hierarchical model; we use improper non‐informative priors on the model parameters and show, under a mild condition, that the joint posterior distribution is proper and the marginal posterior distributions of the model parameters have finite variances. We conduct a simulation study exploring different scenarios. The Bayesian predictors we propose show smaller empirical mean squared errors than the frequentist predictors of Ybarra & Lohr (Biometrika, 95, 2008, 919), and they seem also to be more stable in terms of variability and bias. We apply the proposed methodology to two real examples.  相似文献   

14.
The Fay–Herriot model, a popular approach in small area estimation, uses relevant covariates to improve the inference for quantities of interest in small sub-populations. The conditional Akaike information (AI) (Vaida and Blanchard, 2005 [23]) in linear mixed-effect models with i.i.d. errors can be extended to the Fay–Herriot model for measuring prediction performance. In this paper, we derive the unbiased conditional AIC (cAIC) for three popular approaches to fitting the Fay–Herriot model. The three cAIC have closed forms and are convenient to implement. We conduct a simulation study to demonstrate their accuracy in estimating the conditional AI and superior performance in model selection than the classic AIC. We also apply the cAIC in estimating county-level prevalence rates of obesity for working-age Hispanic females in California.  相似文献   

15.
Consider a set of real valued observations collected over time. We pro¬pose a simple hidden Markow model for these realizations in which the the predicted distribution of the next future observation given the past is easily computed. The hidden or unobservable set of parameters is assumed to have a Markov structure of a special type. The model is quite flexible and can be used to incorporate different types of prior information in straightforward and sensible ways.  相似文献   

16.
Abstract

Variable selection in finite mixture of regression (FMR) models is frequently used in statistical modeling. The majority of applications of variable selection in FMR models use a normal distribution for regression error. Such assumptions are unsuitable for a set of data containing a group or groups of observations with heavy tails and outliers. In this paper, we introduce a robust variable selection procedure for FMR models using the t distribution. With appropriate selection of the tuning parameters, the consistency and the oracle property of the regularized estimators are established. To estimate the parameters of the model, we develop an EM algorithm for numerical computations and a method for selecting tuning parameters adaptively. The parameter estimation performance of the proposed model is evaluated through simulation studies. The application of the proposed model is illustrated by analyzing a real data set.  相似文献   

17.
Abstract

Frailty models are used in survival analysis to account for unobserved heterogeneity in individual risks to disease and death. To analyze bivariate data on related survival times (e.g., matched pairs experiments, twin, or family data), shared frailty models were suggested. Shared frailty models are frequently used to model heterogeneity in survival analysis. The most common shared frailty model is a model in which hazard function is a product of random factor(frailty) and baseline hazard function which is common to all individuals. There are certain assumptions about the baseline distribution and distribution of frailty. In this paper, we introduce shared gamma frailty models with reversed hazard rate. We introduce Bayesian estimation procedure using Markov Chain Monte Carlo (MCMC) technique to estimate the parameters involved in the model. We present a simulation study to compare the true values of the parameters with the estimated values. Also, we apply the proposed model to the Australian twin data set.  相似文献   

18.

Meta-analysis refers to quantitative methods for combining results from independent studies in order to draw overall conclusions. Hierarchical models including selection models are introduced and shown to be useful in such Bayesian meta-analysis. Semiparametric hierarchical models are proposed using the Dirichlet process prior. These rich class of models combine the information of independent studies, allowing investigation of variability both between and within studies, and weight function. Here we investigate sensitivity of results to unobserved studies by considering a hierarchical selection model with including unknown weight function and use Markov chain Monte Carlo methods to develop inference for the parameters of interest. Using Bayesian method, this model is used on a meta-analysis of twelve studies comparing the effectiveness of two different types of flouride, in preventing cavities. Clinical informative prior is assumed. Summaries and plots of model parameters are analyzed to address questions of interest.  相似文献   

19.
In a seminal paper, Godambe [1985. The foundations of finite sample estimation in stochastic processes. Biometrika 72, 419–428.] introduced the ‘estimating function’ approach to estimation of parameters in semi-parametric models under a filtering associated with a martingale structure. Later, Godambe [1987. The foundations of finite sample estimation in stochastic processes II. Bernoulli, Vol. 2. V.N.V. Science Press, 49–54.] and Godambe and Thompson [1989. An extension of quasi-likelihood Estimation. J. Statist. Plann. Inference 22, 137–172.] replaced this filtering by a more flexible conditioning. Abraham et al. [1997. On the prediction for some nonlinear time-series models using estimating functions. In: Basawa, I.V., et al. (Eds.), IMS Selected Proceedings of the Symposium on Estimating Functions, Vol. 32. pp. 259–268.] and Thavaneswaran and Heyde [1999. Prediction via estimating functions. J. Statist. Plann. Inference 77, 89–101.] invoked the theory of estimating functions for one-step ahead prediction in time-series models. This paper addresses the problem of simultaneous estimation of parameters and multi-step ahead prediction of a vector of future random variables in semi-parametric models by extending the inimitable approach of 13 and 14. The proposed technique is in conformity with the paradigm of the modern theory of estimating functions leading to finite sample optimality within a chosen class of estimating functions, which in turn are used to get the predictors. Particular applications of the technique give predictors that enjoy optimality properties with respect to other well-known criteria.  相似文献   

20.
This paper presents a robust extension of factor analysis model by assuming the multivariate normal mean–variance mixture of Birnbaum–Saunders distribution for the unobservable factors and errors. A computationally analytical EM-based algorithm is developed to find maximum likelihood estimates of the parameters. The asymptotic standard errors of parameter estimates are derived under an information-based paradigm. Numerical merits of the proposed methodology are illustrated using both simulated and real datasets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号