首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
ABSTRACT

In this paper we propose a new non parametric estimator of the spectral matrix of a multivariate stationary stochastic process, with the main goal to locally improve the deficiencies of the smoothed periodogram in terms of mean square error of the estimates. Our estimator is based on a convex linear combination of the frequency averaged periodogram and an estimate of the true mean spectral matrix across frequencies. In a wide simulation study we show that our estimator turns out to be able to markedly improve the frequency averaged periodogram especially at central frequencies.  相似文献   

2.
The spectral analysis of Gaussian linear time-series processes is usually based on uni-frequential tools because the spectral density functions of degree 2 and higher are identically zero and there is no polyspectrum in this case. In finite samples, such an approach does not allow the resolution of closely adjacent spectral lines, except by using autoregressive models of excessively high order in the method of maximum entropy. In this article, multi-frequential periodograms designed for the analysis of discrete and mixed spectra are defined and studied for their properties in finite samples. For a given vector of frequencies ω, the sum of squares of the corresponding trigonometric regression model fitted to a time series by unweighted least squares defines the multi-frequential periodogram statistic IM(ω). When ω is unknown, it follows from the properties of nonlinear models whose parameters separate (i.e., the frequencies and the cosine and sine coefficients here) that the least-squares estimator of frequencies is obtained by maximizing I M(ω). The first-order, second-order and distribution properties of I M(ω) are established theoretically in finite samples, and are compared with those of Schuster's uni-frequential periodogram statistic. In the multi-frequential periodogram analysis, the least-squares estimator of frequencies is proved to be theoretically unbiased in finite samples if the number of periodic components of the time series is correctly estimated. Here, this number is estimated at the end of a stepwise procedure based on pseudo-Flikelihood ratio tests. Simulations are used to compare the stepwise procedure involving I M(ω) with a stepwise procedure using Schuster's periodogram, to study an approximation of the asymptotic theory for the frequency estimators in finite samples in relation to the proximity and signal-to-noise ratio of the periodic components, and to assess the robustness of I M(ω) against autocorrelation in the analysis of mixed spectra. Overall, the results show an improvement of the new method over the classical approach when spectral lines are adjacent. Finally, three examples with real data illustrate specific aspects of the method, and extensions (i.e., unequally spaced observations, trend modeling, replicated time series, periodogram matrices) are outlined.  相似文献   

3.
Summary.  The purpose of the paper is to propose a frequency domain approach for irregularly spaced data on R d . We extend the original definition of a periodogram for time series to that for irregularly spaced data and define non-parametric and parametric spectral density estimators in a way that is similar to the classical approach. Introduction of the mixed asymptotics, which are one of the asymptotics for irregularly spaced data, makes it possible to provide asymptotic theories to the spectral estimators. The asymptotic result for the parametric estimator is regarded as a natural extension of the classical result for regularly spaced data to that for irregularly spaced data. Empirical studies are also included to illustrate the frequency domain approach in comparisons with the existing spatial and frequency domain approaches.  相似文献   

4.
Time series arising in practice often have an inherently irregular sampling structure or missing values, that can arise for example due to a faulty measuring device or complex time-dependent nature. Spectral decomposition of time series is a traditionally useful tool for data variability analysis. However, existing methods for spectral estimation often assume a regularly-sampled time series, or require modifications to cope with irregular or ‘gappy’ data. Additionally, many techniques also assume that the time series are stationary, which in the majority of cases is demonstrably not appropriate. This article addresses the topic of spectral estimation of a non-stationary time series sampled with missing data. The time series is modelled as a locally stationary wavelet process in the sense introduced by Nason et al. (J. R. Stat. Soc. B 62(2):271–292, 2000) and its realization is assumed to feature missing observations. Our work proposes an estimator (the periodogram) for the process wavelet spectrum, which copes with the missing data whilst relaxing the strong assumption of stationarity. At the centre of our construction are second generation wavelets built by means of the lifting scheme (Sweldens, Wavelet Applications in Signal and Image Processing III, Proc. SPIE, vol. 2569, pp. 68–79, 1995), designed to cope with irregular data. We investigate the theoretical properties of our proposed periodogram, and show that it can be smoothed to produce a bias-corrected spectral estimate by adopting a penalized least squares criterion. We demonstrate our method with real data and simulated examples.  相似文献   

5.
A frequency domain bootstrap (FDB) is a common technique to apply Efron’s independent and identically distributed resampling technique (Efron, 1979) to periodogram ordinates – especially normalized periodogram ordinates – by using spectral density estimates. The FDB method is applicable to several classes of statistics, such as estimators of the normalized spectral mean, the autocorrelation (but not autocovariance), the normalized spectral density function, and Whittle parameters. While this FDB method has been extensively studied with respect to short-range dependent time processes, there is a dearth of research on its use with long-range dependent time processes. Therefore, we propose an FDB methodology for ratio statistics under long-range dependence, using semi- and nonparametric spectral density estimates as a normalizing factor. It is shown that the FDB approximation allows for valid distribution estimation for a broad class of stationary, long-range (or short-range) dependent linear processes, without any stringent assumptions on the distribution of the underlying process. The results of a large simulation study show that the FDB approximation using a semi- or nonparametric spectral density estimator is often robust for various values of a long-memory parameter reflecting magnitude of dependence. We apply the proposed procedure to two data examples.  相似文献   

6.
The circulant embedding method for generating statistically exact simulations of time series from certain Gaussian distributed stationary processes is attractive because of its advantage in computational speed over a competitive method based upon the modified Cholesky decomposition. We demonstrate that the circulant embedding method can be used to generate simulations from stationary processes whose spectral density functions are dictated by a number of popular nonparametric estimators, including all direct spectral estimators (a special case being the periodogram), certain lag window spectral estimators, all forms of Welch's overlapped segment averaging spectral estimator and all basic multitaper spectral estimators. One application for this technique is to generate time series for bootstrapping various statistics. When used with bootstrapping, our proposed technique avoids some – but not all – of the pitfalls of previously proposed frequency domain methods for simulating time series.  相似文献   

7.
Estimation of the long-range dependence parameter in spatial processes using a semiparametric approach is studied. An extended formulation of the averaged periodogram method proposed in Robinson [1994. Semiparametric analysis of long memory time series. Ann. Statist. 22, 515–539] is derived, considering a certain homogeneous and isotropic behaviour of the spectral distribution in the low frequencies. The weak consistency of the estimator proposed is proved.  相似文献   

8.
The usual covariance estimates for data n-1 from a stationary zero-mean stochastic process {Xt} are the sample covariances Both direct and resampling approaches are used to estimate the variance of the sample covariances. This paper compares the performance of these variance estimates. Using a direct approach, we show that a consistent windowed periodogram estimate for the spectrum is more effective than using the periodogram itself. A frequency domain bootstrap for time series is proposed and analyzed, and we introduce a frequency domain version of the jackknife that is shown to be asymptotically unbiased and consistent for Gaussian processes. Monte Carlo techniques show that the time domain jackknife and subseries method cannot be recommended. For a Gaussian underlying series a direct approach using a smoothed periodogram is best; for a non-Gaussian series the frequency domain bootstrap appears preferable. For small samples, the bootstraps are dangerous: both the direct approach and frequency domain jackknife are better.  相似文献   

9.
One of the main problems in geostatistics is fitting a valid variogram or covariogram model in order to describe the underlying dependence structure in the data. The dependence between observations can be also modeled in the spectral domain, but the traditional methods based on the periodogram as an estimator of the spectral density may present some problems for the spatial case. In this work, we propose an estimation method for the covariogram parameters based on the fast Fourier transform (FFT) of biased covariances. The performance of this estimator for finite samples is compared through a simulation study with other classical methods stated in spatial domain, such as weighted least squares and maximum likelihood, as well as with other spectral estimators. Additionally, an example of application to real data is given.  相似文献   

10.
A new goodness-of-fit test for time series models is proposed. The test statistic is based on the distance between a kernel estimator of the ratio between the true and the hypothesized spectral density and the expected value of the estimator under the null. It provides a quantification of how well a parametric spectral density model fits the sample spectral density (periodogram). The asymptotic distribution of the statistic proposed is derived and its power properties are discussed. To improve upon the large sample (Gaussian) approximation of the distribution of the test statistic under the null, a bootstrap procedure is presented and justified theoretically. The finite sample performance of the test is investigated through a simulation experiment and applications to real data sets are given.  相似文献   

11.
Estimation of a nonparametric regression spectrum based on the periodogram is considered. Neither trend estimation nor smoothing of the periodogram is required. Alternatively, for cases where spectral estimation of phase shifts fails and the shift does not depend on frequency, a time domain estimator of the lag-shift is defined. Asymptotic properties of the frequency and time domain estimators are derived. Simulations and a data example illustrate the methods.  相似文献   

12.
Heavy tail probability distributions are important in many scientific disciplines such as hydrology, geology, and physics and therefore feature heavily in statistical practice. Rather than specifying a family of heavy-tailed distributions for a given application, it is more common to use a nonparametric approach, where the distributions are classified according to the tail behavior. Through the use of the logarithm of Parzen's density-quantile function, this work proposes a consistent, flexible estimator of the tail exponent. The approach we develop is based on a Fourier series estimator and allows for separate estimates of the left and right tail exponents. The theoretical properties for the tail exponent estimator are determined, and we also provide some results of independent interest that may be used to establish weak convergence of stochastic processes. We assess the practical performance of the method by exploring its finite sample properties in simulation studies. The overall performance is competitive with classical tail index estimators, and, in contrast, with these our method obtains somewhat better results in the case of lighter heavy-tailed distributions.  相似文献   

13.
In this work, we analyze the long-range dependence parameter for a nucleotide sequence in several different transformations. The long-range dependence parameter is estimated by the approximated maximum likelihood method, by a novel estimator based on the spectral envelope theory, by a regression method based on the periodogram function, and also by the detrended fluctuation analysis method. We study the length distribution of coding and noncoding regions for all Homo sapiens chromosomes available from the European Bioinformatics Institute. The parameter of the tail rate decay is estimated by the Hill estimator ?α. We show that the tail rate decay is greater than 2 for coding regions, while for almost all noncoding regions it is less than 2.  相似文献   

14.
This article is concerned with inference for the parameter vector in stationary time series models based on the frequency domain maximum likelihood estimator. The traditional method consistently estimates the asymptotic covariance matrix of the parameter estimator and usually assumes the independence of the innovation process. For dependent innovations, the asymptotic covariance matrix of the estimator depends on the fourth‐order cumulants of the unobserved innovation process, a consistent estimation of which is a difficult task. In this article, we propose a novel self‐normalization‐based approach to constructing a confidence region for the parameter vector in such models. The proposed procedure involves no smoothing parameter, and is widely applicable to a large class of long/short memory time series models with weakly dependent innovations. In simulation studies, we demonstrate favourable finite sample performance of our method in comparison with the traditional method and a residual block bootstrap approach.  相似文献   

15.

We consider a sieve bootstrap procedure to quantify the estimation uncertainty of long-memory parameters in stationary functional time series. We use a semiparametric local Whittle estimator to estimate the long-memory parameter. In the local Whittle estimator, discrete Fourier transform and periodogram are constructed from the first set of principal component scores via a functional principal component analysis. The sieve bootstrap procedure uses a general vector autoregressive representation of the estimated principal component scores. It generates bootstrap replicates that adequately mimic the dependence structure of the underlying stationary process. We first compute the estimated first set of principal component scores for each bootstrap replicate and then apply the semiparametric local Whittle estimator to estimate the memory parameter. By taking quantiles of the estimated memory parameters from these bootstrap replicates, we can nonparametrically construct confidence intervals of the long-memory parameter. As measured by coverage probability differences between the empirical and nominal coverage probabilities at three levels of significance, we demonstrate the advantage of using the sieve bootstrap compared to the asymptotic confidence intervals based on normality.

  相似文献   

16.
If the power spectral density of a continuous time stationary stochastic process is not limited to a finite bandwidth, data sampled from that process at any uniform sampling rate leads to biased and inconsistent spectrum estimators, which are unsuitable for constructing confidence intervals. In this paper, we use the smoothed periodogram estimator to construct asymptotic confidence intervals shrinking to the true spectra, by allowing the sampling rate to go to infinity suitably fast as the sample size goes to infinity. The proposed method requires minimal computation, as it does not involve bootstrap or other resampling. The method is illustrated through a Monte-Carlo simulation study, and its performance is compared with that of the corresponding method based on uniform sampling at a fixed rate.  相似文献   

17.
ABSTRACT

We propose a new estimator for the spot covariance matrix of a multi-dimensional continuous semimartingale log asset price process, which is subject to noise and nonsynchronous observations. The estimator is constructed based on a local average of block-wise parametric spectral covariance estimates. The latter originate from a local method of moments (LMM), which recently has been introduced by Bibinger et al.. We prove consistency and a point-wise stable central limit theorem for the proposed spot covariance estimator in a very general setup with stochastic volatility, leverage effects, and general noise distributions. Moreover, we extend the LMM estimator to be robust against autocorrelated noise and propose a method to adaptively infer the autocorrelations from the data. Based on simulations we provide empirical guidance on the effective implementation of the estimator and apply it to high-frequency data of a cross-section of Nasdaq blue chip stocks. Employing the estimator to estimate spot covariances, correlations, and volatilities in normal but also unusual periods yields novel insights into intraday covariance and correlation dynamics. We show that intraday (co-)variations (i) follow underlying periodicity patterns, (ii) reveal substantial intraday variability associated with (co-)variation risk, and (iii) can increase strongly and nearly instantaneously if new information arrives. Supplementary materials for this article are available online.  相似文献   

18.
ABSTRACT

This article proposes a method to estimate the degree of cointegration in bivariate series and suggests a test statistic for testing noncointegration based on the determinant of the spectral density matrix for the frequencies close to zero. In the study, series are assumed to be I(d), 0 < d ? 1, with parameter d supposed to be known. In this context, the order of integration of the error series is I(d ? b), b ∈ [0, d]. Besides, the determinant of the spectral density matrix for the dth difference series is a power function of b. The proposed estimator for b is obtained here performing a regression of logged determinant on a set of logged Fourier frequencies. Under the null hypothesis of noncointegration, the expressions for the bias and variance of the estimator were derived and its consistency property was also obtained. The asymptotic normality of the estimator, under Gaussian and non-Gaussian innovations, was also established. A Monte Carlo study was performed and showed that the suggested test possesses correct size and good power for moderate sample sizes, when compared with other proposals in the literature. An advantage of the method proposed here, over the standard methods, is that it allows to know the order of integration of the error series without estimating a regression equation. An application was conducted to exemplify the method in a real context.  相似文献   

19.
Time series with cyclical long memory are characterized by a spectral pole at some frequency ω between 0 and π such that the series has a persistent cycle of period 2π/ω, implying a quasi-periodic behaviour that slightly evolves with time. Accurate estimation of ω is needed for a precise determination of the characteristic of the series (e.g. for business cycle determination or signal estimation). We propose a simple iterative algorithm of estimation of ω based on the maximizer of the periodogram evaluated at an increasingly finer grid of frequencies and compare its performance with more usual methods of estimation restricted to Fourier frequencies. We also apply this technique to the estimation of the frequency of the sunspot index and the business cycle of the differenced unemployment level of the USA.  相似文献   

20.
We derive matrix expressions in closed form for the autocovariance function and the spectral density of Markov switching GARCH models and their powers. For this, we apply the Riesz–Fischer theorem which defines the spectral representation as the Fourier transform of the autocovariance function. Under suitable assumptions, we prove that the sample estimator of the spectral density is consistent and asymptotically normally distributed. Further statistical implications in terms of order identification and parameter estimation are discussed. A simulation study confirms the validity of the asymptotic properties. These methods are also well suited for financial market applications, and in particular for the analysis of time series in the frequency domain, as shown in some proposed real-world examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号