首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For the class of autoregressive-moving average (ARMA) processes, we examine the relationship between the dual and the inverse processes. It is demonstrated that the inverse process generated by a causal and invertible ARMA (p, q) process is a causal and invertible ARMA (q, p) model. Moreover, it is established that this representation is strong if and only if the generating process is Gaussian. More precisely, it is derived that the linear innovation process of the inverse process is an all-pass model. Some examples and applications to time reversibility are given to illustrate the obtained results.  相似文献   

2.
There is now a vast literature on the theory and applications of generalized random processes, pioneered by Itô (1953), Gel’fand (1955) and Yaglom (1957). In this note we make use of the theory of generalized random processes as defined in the book of Gel’fand and Vilenkin (1964) to extend the definition of continuous-time ARMA(p,q  ) processes to allow q≥pqp, in which case the processes do not exist in the classical sense. The resulting CARMA generalized random processes provide a framework within which it is possible to study derivatives of CARMA processes of arbitrarily high order.  相似文献   

3.
We introduce Euler(p, q) processes as an extension of the Euler(p) processes for purposes of obtaining more parsimonious models for non stationary processes whose periodic behavior changes approximately linearly in time. The discrete Euler(p, q) models are a class of multiplicative stationary (M-stationary) processes and basic properties are derived. The relationship between continuous and discrete mixed Euler processes is shown. Fundamental to the theory and application of Euler(p, q) processes is a dual relationship between discrete Euler(p, q) processes and ARMA processes, which is established. The usefulness of Euler(p, q) processes is examined by comparing spectral estimation with that obtained by existing methods using both simulated and real data.  相似文献   

4.
Consider an ergodic Markov chain X(t) in continuous time with an infinitesimal matrix Q = (qij) defined on a finite state space {0, 1,…, N}. In this note, we prove that if X(t) is skip-free positive (negative, respectively), i.e., qij, = 0 for j > i+ 1 (i > j+ 1), then the transition probability pij(t) = Pr[X(t)=j | X(0) =i] can be represented as a linear combination of p0N(t) (p(m)(N0)(t)), 0 ≤ m ≤N, where f(m)(t) denotes the mth derivative of a function f(t) with f(0)(t) =f(t). If X(t) is a birth-death process, then pij(t) is represented as a linear combination of p0N(m)(t), 0 ≤mN - |i-j|.  相似文献   

5.
The time series of counts observed in practice often exhibit overdispersion. The INGARCH(p, q) models are able to describe integer-valued processes with overdispersion. Known properties of these models, however, are nearly exclusively restricted to the special case p = q = 1. In this article, we derive a set of equations from which the variance and the autocorrelation function of the general case can be obtained. We investigate the purely autoregressive INGARCH(p, 0) models and show that they are closely related to the standard AR(p) models. For p = 1, we determine the marginal distribution in terms of its cumulants. A real-data example highlights potential fields of application of the INGARCH(p, 0) models.  相似文献   

6.
Of the two most widely estimated univariate asymmetric conditional volatility models, the exponential GARCH (or EGARCH) specification is said to be able to capture asymmetry, which refers to the different effects on conditional volatility of positive and negative effects of equal magnitude, and leverage, which refers to the negative correlation between the returns shocks and subsequent shocks to volatility. However, the statistical properties of the (quasi-)maximum likelihood estimator (QMLE) of the EGARCH(p, q) parameters are not available under general conditions, but only for special cases under highly restrictive and unverifiable sufficient conditions, such as EGARCH(1,0) or EGARCH(1,1), and possibly only under simulation. A limitation in the development of asymptotic properties of the QMLE for the EGARCH(p, q) model is the lack of an invertibility condition for the returns shocks underlying the model. It is shown in this article that the EGARCH(p, q) model can be derived from a stochastic process, for which sufficient invertibility conditions can be stated simply and explicitly when the parameters respect a simple condition.11Using the notation introduced in part 2, this refers to the cases where α ≥ |γ| or α ≤ ? |γ|. The first inequality is generally assumed in the literature related to the invertibility of EGARCH. This article provides (in the Appendix) an argument for the possible lack of invertibility when these conditions are not met. This will be useful in reinterpreting the existing properties of the QMLE of the EGARCH(p, q) parameters.  相似文献   

7.
7 and 8 introduce a power max-autoregressive process, in short pARMAX, as an alternative to heavy tailed ARMA when modeling rare events. In this paper, an extension of pARMAX is considered, by including a random component which makes the model more applicable to real data. We will see conditions under which this new model, here denoted as pRARMAX, has unique stationary distribution and we analyze its extremal behavior. Based on Bortot and Tawn (1998), we derive a threshold-dependent extremal index which is a functional of the coefficient of tail dependence of 14 and 15 which in turn relates with the pRARMAX parameter. In order to fit a pRARMAX model to an observed data series, we present a methodology based on minimizing the Bayes risk in classification theory and analyze this procedure through a simulation study. We illustrate with an application to financial data.  相似文献   

8.
This study investigates the exact D-optimal designs of the linear log contrast model using the mixture experiment suggested by Aitchison and Bacon-Shone (1984) and the design space restricted by Lim (1987) and Chan (1988). Results show that for three ingredients, there are six extreme points that can be divided into two non-intersect sets S1 and S2. An exact N-point D  -optimal design for N=3p+q,p≥1,1≤q≤2N=3p+q,p1,1q2 arranges equal weight n/N,0≤n≤pn/N,0np at the points of S1 (S2) and puts the remaining weight (N−3n)/N(N3n)/N on the points of S2 (S1) as evenly as possible. For four ingredients and N=6p+q,p≥1,1≤q≤5N=6p+q,p1,1q5, an exact N-point design that distributes the weights as evenly as possible among the six supports of the approximate D-optimal design is exact D-optimal.  相似文献   

9.
Repeated Measurement Designs, with two treatments, n (experimental) units and p periods are examined. The model examined is with uncorrelated observations following a continuous distribution with constant variance and the parameters of interest are (i) the difference of direct effects and (ii) the difference of residual effects. In this paper (a) the difference of Universal optimality and Φ-optimality is clarified and (b) the sufficient conditions of Cheng and Wu (1980) are extended to include the case n=2 mod 4, p even, (c) also it is shown that these conditions are also necessary for Φ-optimality for estimating direct as well as residual effects, and (d) a method is proposed to construct Φ-optimal designs and examples are given when n even and p=3, n=0 mod 4 and p=4, n=2 mod 4 and p=4. In the last case the estimated parameters in the optimal design are correlated.  相似文献   

10.
This paper deals with the distributions of test statistics for the number of useful discriminant functions and the characteristic roots in canonical discriminant analysis. These asymptotic distributions have been extensively studied when the number p   of variables is fixed, the number q+1q+1 of groups is fixed, and the sample size N tends to infinity. However, these approximations become increasingly inaccurate as the value of p increases for a fixed value of N. On the other hand, we encounter to analyze high-dimensional data such that p is large compared to n. The purpose of the present paper is to derive asymptotic distributions of these statistics in a high-dimensional framework such that q   is fixed, p→∞p, m=n-p+q→∞m=n-p+q, and p/n→c∈(0,1)p/nc(0,1), where n=N-q-1n=N-q-1. Numerical simulation revealed that our new asymptotic approximations are more accurate than the classical asymptotic approximations in a considerably wide range of (n,p,q)(n,p,q).  相似文献   

11.
The sieve bootstrap (SB) prediction intervals for invertible autoregressive moving average (ARMA) processes are constructed using resamples of residuals obtained by fitting a finite degree autoregressive approximation to the time series. The advantage of this approach is that it does not require the knowledge of the orders, p and q, associated with the ARMA(p, q) model. Up until recently, the application of this method has been limited to ARMA processes whose autoregressive polynomials do not have fractional unit roots. The authors, in a 2012 publication, introduced a version of the SB suitable for fractionally integrated autoregressive moving average (FARIMA (p,d,q)) processes with 0<d<0.5 and established its asymptotic validity. Herein, we study the finite sample properties this new method and compare its performance against an older method introduced by Bisaglia and Grigoletto in 2001. The sieve bootstrap (SB) method is a numerically simpler alternative to the older method which requires the estimation of p, d, and q at every bootstrap step. Monte-Carlo simulation studies, carried out under the assumption of normal, mixture of normals, and exponential distributions for the innovations, show near nominal coverages for short-term and long-term SB prediction intervals under most situations. In addition, the sieve bootstrap method yields better coverage and narrower intervals compared to the Bisaglia–Grigoletto method in some situations, especially when the error distribution is a mixture of normals.  相似文献   

12.
Let EG(m, 2) denote the m-dimensional finite Euclidean space (or geometry) based on GF(2), the finite field with elements 0 and 1. Let T be a set of points in this space, then T is said to form a q-covering (where q is an integer satisfying 1?q?m) of EG(m, 2) if and only if T has a nonempty intersection with every (m-q)-flat of EG(m, 2). This problem first arose in the statistical context of factorial search designs where it is known to have very important and wide ranging applications. Evidently, it is also useful to study this from the purely combinatorial point of view. In this paper, certain fundamental studies have been made for the case when q=2. Let N denote the size of the set T. Given N, we study the maximal value of m.  相似文献   

13.
14.
In this paper, we establish several recurrence relations for the single and product moments of progressively Type-II right censored order statistics from a logistic distribution. The use of these relations in a systematic manner allows us to compute all the means, variances and covariances of progressively Type-II right censored order statistics from the logistic distribution for all sample sizes n, effective sample sizes m, and all progressive censoring schemes (R1,…,Rm). The results established here generalize the corresponding results for the usual order statistics due to [Shah, 1966] and [Shah, 1970]. These moments are then utilized to derive best linear unbiased estimators of the location and scale parameters of the logistic distribution. A comparison of these estimators with the maximum likelihood estimations is then made. The best linear unbiased predictors of censored failure times are briefly discussed. Finally, an illustrative example is presented.  相似文献   

15.
In experiments in which the response to a treatment can be affected by other treatments, the interference model with neighbor effects is usually used. It is known that circular neighbor balanced designs (CNBDs) are universally optimal under such a model if the neighbor effects are fixed (Druilhet, 1999) or random (4 and 7). However, such designs cannot exist for every combination of design parameters. In the class of block designs with the same number of treatments as experimental units per block, a CNBD cannot exist if the number of blocks, b  , is equal to p(t−1)±1p(t1)±1, where p is a positive integer and t is the number of treatments. Filipiak et al. (2008) gave the structure of the left-neighboring matrix of E-optimal complete block designs with p  =1 under the model with fixed neighbor effects. The purpose of this paper is to generalize E-optimality results for designs with p∈NpN assuming random neighbor effects.  相似文献   

16.
Consider a sequence of independent Bernoulli trials and assume that the odds of success (or failure) or the probability of success (or failure) at the ith trial varies (increases or decreases) geometrically with rate (proportion) q, for increasing i=1,2,…. Introducing the notion of a geometric sequence of trials as a sequence of Bernoulli trials, with constant probability, that is terminated with the occurrence of the first success, a useful stochastic model is constructed. Specifically, consider a sequence of independent geometric sequences of trials and assume that the probability of success at the jth geometric sequence varies (increases or decreases) geometrically with rate (proportion) q, for increasing j=1,2,…. On both models, let Xn be the number of successes up the nth trial and Tk (or Wk) be the number of trials (or failures) until the occurrence of the kth success. The distributions of these random variables turned out to be q-analogues of the binomial and Pascal (or negative binomial) distributions. The distributions of Xn, for n→∞n, and the distributions of Wk, for k→∞k, can be approximated by a q  -Poisson distribution. Also, as k→0k0, a zero truncated negative q  -binomial distribution Uk=Wk|Wk>0Uk=Wk|Wk>0 can be approximated by a q-logarithmic distribution. These discrete q-distributions and their applications are reviewed, with critical comments and additions. Finally, consider a sequence of independent Bernoulli trials and assume that the probability of success (or failure) is a product of two sequences of probabilities with one of these sequences depending only the number of trials and the other depending only on the number of successes (or failures). The q-distributions of the number Xn of successes up to the nth trial and the number Tk of trials until the occurrence of the kth success are similarly reviewed.  相似文献   

17.
An ARMA(p, q) process observed with an ARMA(c, d) error has an ARMA (p + c, k) representation with k = max(c + q, p + d) whose parameters satisfy some nonlinear constraints. Identification of the model is discussed. We develop Newton-Raphson estimators for the ARMA(p + c, k) process which take advantage of the information contained in the nonlinear restrictions. Explicit expressions for the derivatives of the restrictions are derived.  相似文献   

18.
In this paper, we prove that all Storer's difference sets are cyclic. We also prove that for p<1.8×1025, Whiteman's difference sets exist if and only if (p,q)=(17,53) and (46817,140453).  相似文献   

19.
In this study, we introduce the Heine process, {Xq(t), t > 0}, 0 < q < 1, where the random variable Xq(t), for every t > 0, represents the number of events (occurrences or arrivals) during a time interval (0, t]. The Heine process is introduced as a q-analog of the basic Poisson process. Also, in this study, we prove that the distribution of the waiting time Wν, q, ν ? 1, up to the νth arrival, is a q-Erlang distribution and the interarrival times Tk, q = Wk, q ? Wk ? 1, q,?k = 1, 2, …, ν with W0, q = 0 are independent and equidistributed with a q-Exponential distribution.  相似文献   

20.
ABSTRACT

In this paper, we start with establishing the existence of a minimal (maximal) Lp (1 < p ? 2) solution to a one-dimensional backward stochastic differential equation (BSDE), where the generator g satisfies a p-order weak monotonicity condition together with a general growth condition in y and a linear growth condition in z. Then, we propose and prove a comparison theorem of Lp (1 < p ? 2) solutions to one-dimensional BSDEs with q-order (1 ? q < p) weak monotonicity and uniform continuity generators. As a consequence, an existence and uniqueness result of Lp (1 < p ? 2) solutions is also given for BSDEs whose generator g is q-order (1 ? q < p) weakly monotonic with a general growth in y and uniformly continuous in z.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号