首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A q-Pólya urn model is introduced by assuming that the probability of drawing a white ball at a drawing varies geometrically, with rate q, both with the number of drawings and the number of white balls drawn in the previous drawings. Then, the probability mass functions and moments of (a) the number of white balls drawn in a specific number of drawings and (b) the number of black balls drawn until a specific number of white balls are drawn are derived. These two distributions turned out to be q-analogs of the Pólya and the inverse Pólya distributions, respectively. Also, the limiting distributions of the q-Pólya and the inverse q-Pólya distributions, as the number of balls in the urn tends to infinity, are shown to be a q-binomial and a negative q-binomial distribution, respectively. In addition, the positive or negative q-hypergeometric distribution is obtained as conditional distribution of a positive or negative q-binomial distribution, given its sum with another positive or negative q-binomial distribution, independent of it.  相似文献   

2.
Consider a sequence of independent Bernoulli trials and assume that the odds of success (or failure) or the probability of success (or failure) at the ith trial varies (increases or decreases) geometrically with rate (proportion) q, for increasing i=1,2,…. Introducing the notion of a geometric sequence of trials as a sequence of Bernoulli trials, with constant probability, that is terminated with the occurrence of the first success, a useful stochastic model is constructed. Specifically, consider a sequence of independent geometric sequences of trials and assume that the probability of success at the jth geometric sequence varies (increases or decreases) geometrically with rate (proportion) q, for increasing j=1,2,…. On both models, let Xn be the number of successes up the nth trial and Tk (or Wk) be the number of trials (or failures) until the occurrence of the kth success. The distributions of these random variables turned out to be q-analogues of the binomial and Pascal (or negative binomial) distributions. The distributions of Xn, for n→∞n, and the distributions of Wk, for k→∞k, can be approximated by a q  -Poisson distribution. Also, as k→0k0, a zero truncated negative q  -binomial distribution Uk=Wk|Wk>0Uk=Wk|Wk>0 can be approximated by a q-logarithmic distribution. These discrete q-distributions and their applications are reviewed, with critical comments and additions. Finally, consider a sequence of independent Bernoulli trials and assume that the probability of success (or failure) is a product of two sequences of probabilities with one of these sequences depending only the number of trials and the other depending only on the number of successes (or failures). The q-distributions of the number Xn of successes up to the nth trial and the number Tk of trials until the occurrence of the kth success are similarly reviewed.  相似文献   

3.
4.
Every random q-vector with finite moments generates a set of orthonormal polynomials. These are generated from the basis functions xn = xn11xnqq using Gram–Schmidt orthogonalization. One can cycle through these basis functions using any number of ways. Here, we give results using minimum cycling. The polynomials look simpler when centered about the mean of X, and still simpler form when X is symmetric about zero. This leads to an extension of the multivariate Hermite polynomial for a general random vector symmetric about zero. As an example, the results are applied to the multivariate normal distribution.  相似文献   

5.
Let Fq be a finite field with q elements, where q is a power of a prime. In this paper, we first correct a counting error for the formula N(K2ν,0(m)) occurring in Carlitz (1954. Arch. Math. V, 19–31). Next, using the geometry of symplectic group over Fq, we have given the numbers of solutions X of rank k and solutions X to equation XAX′=B over Fq, where A and B are alternate matrices of order n, rank 2ν and order m, rank 2s, respectively. Finally, an elementary q-identity is obtained from N(K2ν,0(0)), and the explicit results for N(Kn,2ν,Km,2s) is represented by terminating q-hypergeometric series.  相似文献   

6.
In this article, we derive exact expressions for the single and product moments of order statistics from Weibull distribution under the contamination model. We assume that X1, X2, …, Xn ? p are independent with density function f(x) while the remaining, p observations (outliers) Xn ? p + 1, …, Xn are independent with density function arises from some modified version of f(x), which is called g(x), in which the location and/or scale parameters have been shifted in value. Next, we investigate the effect of the outliers on the BLUE of the scale parameter. Finally, we deduce some special cases.  相似文献   

7.
In this study, we introduce the Heine process, {Xq(t), t > 0}, 0 < q < 1, where the random variable Xq(t), for every t > 0, represents the number of events (occurrences or arrivals) during a time interval (0, t]. The Heine process is introduced as a q-analog of the basic Poisson process. Also, in this study, we prove that the distribution of the waiting time Wν, q, ν ? 1, up to the νth arrival, is a q-Erlang distribution and the interarrival times Tk, q = Wk, q ? Wk ? 1, q,?k = 1, 2, …, ν with W0, q = 0 are independent and equidistributed with a q-Exponential distribution.  相似文献   

8.
9.
A new statistic, (p), is developed for variable selection in a system-of-equations model. The standardized total mean square error in the (p)statistic is weighted by the covariance matrix of dependent variables instead of the error covariance matrix of the true model as in the original definition. The new statistic can be also used for model selection in the non-nested models. The estimate of (p), SC(p), is derived and shown to become SCε(p) in the similar form of Cp in a single-equation model when the covariance matrix of sampled dependent variables is replaced by the error covariance matrix under the full model.  相似文献   

10.
Let (X,Y) be a pair of random variables with supp(X)⊆[0,1] and EY2<∞. Let m be the corresponding regression function. Estimation of m from i.i.d. data is considered. The L2 error with integration with respect to the design measure μ (i.e., the distribution of X) is used as an error criterion.Estimates are constructed by estimating the coefficients of an orthonormal expansion of the regression function. This orthonormal expansion is done with respect to a family of piecewise polynomials, which are orthonormal in L2(μn), where μn denotes the empirical design measure.It is shown that the estimates are weakly and strongly consistent for every distribution of (X,Y). Furthermore, the estimates behave nearly as well as an ideal (but not applicable) estimate constructed by fitting a piecewise polynomial to the data, where the partition of the piecewise polynomial is chosen optimally for the underlying distribution. This implies e.g., that the estimates achieve up to a logarithmic factor the rate n−2p/(2p+1), if the underlying regression function is piecewise p-smooth, although their definition depends neither on the smoothness nor on the location of the discontinuities of the regression function.  相似文献   

11.
Let X be a discrete random variable the set of possible values (finite or infinite) of which can be arranged as an increasing sequence of real numbers a1<a2<a3<…. In particular, ai could be equal to i for all i. Let X1nX2n≦?≦Xnn denote the order statistics in a random sample of size n drawn from the distribution of X, where n is a fixed integer ≧2. Then, we show that for some arbitrary fixed k(2≦kn), independence of the event {Xkn=X1n} and X1n is equivalent to X being either degenerate or geometric. We also show that the montonicity in i of P{Xkn = X1n | X1n = ai} is equivalent to X having the IFR (DFR) property. Let ai = i and G(i) = P(X≧i), i = 1, 2, …. We prove that the independence of {X2n ? X1nB} and X1n for all i is equivalent to X being geometric, where B = {m} (B = {m,m+1,…}), provided G(i) = qi?1, 1≦im+2 (1≦im+1), where 0<q<1.  相似文献   

12.
In this paper, by considering a 2n-dimensional elliptically contoured random vector (XT,YT)T=(X1,…,Xn,Y1,…,Yn)T, we derive the exact joint distribution of linear combinations of concomitants of order statistics arising from X. Specifically, we establish a mixture representation for the distribution of the rth concomitant order statistic, and also for the joint distribution of the rth order statistic and its concomitant. We show that these distributions are indeed mixtures of multivariate unified skew-elliptical distributions. The two most important special cases of multivariate normal and multivariate t distributions are then discussed in detail. Finally, an application of the established results in an inferential problem is outlined.  相似文献   

13.
We consider a centered stochastic process {X(t):tT} with known and continuous covariance function. On the basis of observations X(t1), …, X(tn) we approximate the whole path by orthogonal projection and measure the performance of the chosen design d = (t1, …, tn)′ by the corresponding mean squared L2-distance. For covariance functions on T2 = [0, 1]2, which satisfy a generalized Sacks-Ylvisaker regularity condition of order zero, we construct asymptotically optimal sequences of designs. Moreover, we characterize the achievement of a lower error bound, given by Micchelli and Wahba (1981), and study the question of whether this bound can be attained.  相似文献   

14.
Consider an ergodic Markov chain X(t) in continuous time with an infinitesimal matrix Q = (qij) defined on a finite state space {0, 1,…, N}. In this note, we prove that if X(t) is skip-free positive (negative, respectively), i.e., qij, = 0 for j > i+ 1 (i > j+ 1), then the transition probability pij(t) = Pr[X(t)=j | X(0) =i] can be represented as a linear combination of p0N(t) (p(m)(N0)(t)), 0 ≤ m ≤N, where f(m)(t) denotes the mth derivative of a function f(t) with f(0)(t) =f(t). If X(t) is a birth-death process, then pij(t) is represented as a linear combination of p0N(m)(t), 0 ≤mN - |i-j|.  相似文献   

15.
Let GF(s) be the finite field with s elements.(Thus, when s=3, the elements of GF(s) are 0, 1 and 2.)Let A(r×n), of rank r, and ci(i=1,…,f), (r×1), be matrices over GF(s). (Thus, for n=4, r=2, f=2, we could have A=[11100121], c1=[10], c2=[02].) Let Ti (i=1,…,f) be the flat in EG(n, s) consisting of the set of all the sn?r solutions of the equations At=ci, wheret′=(t1,…,tn) is a vector of variables.(Thus, EG(4, 3) consists of the 34=81 points of the form (t1,t2,t3,t4), where t's take the values 0,1,2 (in GF(3)). The number of solutions of the equations At=ci is sn?r, where r=Rank(A), and the set of such solutions is said to form an (n?r)-flat, i.e. a flat of (n?r) dimensions. In our example, both T1 and T2 are 2-flats consisting of 34?2=9 points each. The flats T1,T2,…,Tf are said to be parallel since, clearly, no two of them can have a common point. In the example, the points of T1 are (1000), (0011), (2022), (0102), (2110), (1121), (2201), (1212) and (0220). Also, T2 consists of (0002), (2010), (1021), (2101), (1112), (0120), (1200), (0211) and (2222).) Let T be the fractional design for a sn symmetric factorial experiment obtained by taking T1,T2,…,Tf together. (Thus, in the example, 34=81 treatments of the 34 factorial experiment correspond one-one with the points of EG(4,3), and T will be the design (i.e. a subset of the 81 treatments) consisting of the 18 points of T1 and T2 enumerated above.)In this paper, we lay the foundation of the general theory of such ‘parallel’ types of designs. We define certain functions of A called the alias component matrices, and use these to partition the coefficient matrix X (n×v), occuring in the corresponding linear model, into components X.j(j=0,1,…,g), such that the information matrix X is the direct sum of the X′.jX.j. Here, v is the total number of parameters, which consist of (possibly μ), and a (general) set of (geometric) factorial effects (each carrying (s?1) degrees of freedom as usual). For j≠0, we show that the spectrum of X′.jX.j does not change if we change (in a certain important way) the usual definition of the effects. Assuming that such change has been adopted, we consider the partition of the X.j into the Xij (i=1,…,f). Furthermore, the Xij are in turn partitioned into smaller matrices (which we shall here call the) Xijh. We show that each Xijh can be factored into a product of 3 matrices J, ζ (not depending on i,j, and h) and Q(j,h,i)where both the Kronecker and ordinary product are used. We introduce a ring R using the additive groups of the rational field and GF(s), and show that the Q(j,h,i) belong to a ring isomorphic to R. When s is a prime number, we show that R is the cyclotomic field. Finally, we show that the study of the X.j and X′.jX.j can be done in a much simpler manner, in terms of certain relatively small sized matrices over R.  相似文献   

16.
《随机性模型》2013,29(1):25-37
For a shot-noise process X(t) with Poisson arrival times and exponentially diminishing shocks of i.i.d. sizes, we consider the first time T b at which a given level b > 0 is exceeded. An integral equation for the joint density of T b and X(T b ) is derived and, for the case of exponential jumps, solved explicitly in terms of Laplace transforms (LTs). In the general case we determine the ordinary LT of the function ? P(T b > t) in terms of certain LTs derived from the distribution function H(x; t) = P(X(t) ≤ x), considered as a function of both variables x and t. Moreover, for G(t, u) = P(T b > t, X(t) < u), that is the joint distribution function of sup0 ≤ st X(s) and X(t), an integro-differential equation is presented, whose unique solution is G(t, u).  相似文献   

17.
Let X1,…,Xn be an exchangeable sequence of binary trials arranged on a circle with possible values “1” (success) or “0” (failure). In an exchangeable sequence, the joint distribution of X1,X2,…,Xn is invariant under the permutation of its arguments. For the circular sequence, general expressions for the joint distributions of run statistics based on the joint distribution of success and failure run lengths are obtained. As a special case, we present our results for Bernoulli trials. The results presented consist of combinatorial terms and therefore provide easier calculations. For illustration purposes, some numerical examples are given and the reliability of the circular combined k-out-of-n:G and consecutive kc-out-of-n:G system under stress–strength setup is evaluated.  相似文献   

18.
19.
The paper studies the three-parameter generalization of the logarithmic distribution that is obtained as the cluster distribution for the generalized Euler distribution. The diagnostic statistic, R(x)=xpx/[(x-1)px-1]R(x)=xpx/[(x-1)px-1], is constant for the logarithmic distribution. For the new distribution it can decrease, stay constant, or increase as x increases. The relative values of the extra parameters determine the flatness/hollowness of the distribution and its tail behaviour. Kemp's q-logarithmic distribution and the Euler cluster distribution are special cases. Fitted data sets illustrate the properties of the distribution and its limiting forms.  相似文献   

20.
In this article, a semi-Markovian random walk with delay and a discrete interference of chance (X(t)) is considered. It is assumed that the random variables ζ n , n = 1, 2,…, which describe the discrete interference of chance form an ergodic Markov chain with ergodic distribution which is a gamma distribution with parameters (α, λ). Under this assumption, the asymptotic expansions for the first four moments of the ergodic distribution of the process X(t) are derived, as λ → 0. Moreover, by using the Riemann zeta-function, the coefficients of these asymptotic expansions are expressed by means of numerical characteristics of the summands, when the process considered is a semi-Markovian Gaussian random walk with small drift β.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号