首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ranked set sample sign test for quantiles   总被引:2,自引:0,他引:2  
A ranked set sample version of the sign test is proposed for testing hypotheses concerning the quantiles of a population characteristic. Both equal and unequal allocations are considered and the relative performance of different allocations is assessed in terms of Pitman's asymptotic relative efficiency. In particular, for each quantile, the allocation that maximizes the efficacy is identified and shown to not depend on the population distribution.  相似文献   

2.
This work considers the problem of estimating a quantile function based on different stratified sampling mechanism. First, we develop an estimate for population quantiles based on stratified simple random sampling (SSRS) and extend the discussion for stratified ranked set sampling (SRSS). Furthermore, the asymptotic behavior of the proposed estimators are presented. In addition, we derive an analytical expression for the optimal allocation under both sampling schemes. Simulation studies are designed to examine the performance of the proposed estimators under varying distributional assumptions. The efficiency of the proposed estimates is further illustrated by analyzing a real data set from CHNS.  相似文献   

3.
In this paper, a robust extreme ranked set sampling (RERSS) procedure for estimating the population mean is introduced. It is shown that the proposed method gives an unbiased estimator with smaller variance, provided the underlying distribution is symmetric. However, for asymmetric distributions a weighted mean is given, where the optimal weights are computed by using Shannon's entropy. The performance of the population mean estimator is discussed along with its properties. Monte Carlo simulations are used to demonstrate the performance of the RERSS estimator relative to the simple random sample (SRS), ranked set sampling (RSS) and extreme ranked set sampling (ERSS) estimators. The results indicate that the proposed estimator is more efficient than the estimators based on the traditional sampling methods.  相似文献   

4.
In this article, a robust ranked set sampling (LRSS) scheme for estimating population mean is introduced. The proposed method is a generalization for many types of ranked set sampling that introduced in the literature for estimating the population mean. It is shown that the LRSS method gives unbiased estimator for the population mean with minimum variance providing that the underlying distribution is symmetric. However, for skewed distributions a weighted mean is given, where the optimal weights is computed by using Shannon's entropy. The performance of the population mean estimator is discussed along with its properties. Monte Carlo comparisons for detecting outliers are made with the traditional simple random sample and the ranked set sampling for some distributions. The results indicate that the LRSS estimator is superior alternative to the existing methods.  相似文献   

5.
This paper develops statistical inference for population quantiles based on a partially rank-ordered set (PROS) sample design. A PROS sample design is similar to a ranked set sample with some clear differences. This design first creates partially rank-ordered subsets by allowing ties whenever the units in a set cannot be ranked with high confidence. It then selects a unit for full measurement at random from one of these partially rank-ordered subsets. The paper develops a point estimator, confidence interval and hypothesis testing procedure for the population quantile of order p. Exact, as well as asymptotic, distribution of the test statistic is derived. It is shown that the null distribution of the test statistic is distribution-free, and statistical inference is reasonably robust against possible ranking errors in ranking process.  相似文献   

6.
We consider nonparametric interval estimation for the population quantiles based on unbalanced ranked set samples. We derived the large sample distribution of the empirical log likelihood ratio statistic for the quantiles. Approximate intervals for quantiles are obtained by inverting the likelihood ratio statistic. The performance of the empirical likelihood interval is investigated and compared with the performance of the intervals based on the ranked set sample order statistics.  相似文献   

7.
Ranked set sampling is a sampling technique that provides substantial cost efficiency in experiments where a quick, inexpensive ranking procedure is available to rank the units prior to formal, expensive and precise measurements. Although the theoretical properties and relative efficiencies of this approach with respect to simple random sampling have been extensively studied in the literature for the infinite population setting, the use of ranked set sampling methods has not yet been explored widely for finite populations. The purpose of this study is to use sheep population data from the Research Farm at Ataturk University, Erzurum, Turkey, to demonstrate the practical benefits of ranked set sampling procedures relative to the more commonly used simple random sampling estimation of the population mean and variance in a finite population. It is shown that the ranked set sample mean remains unbiased for the population mean as is the case for the infinite population, but the variance estimators are unbiased only with use of the finite population correction factor. Both mean and variance estimators provide substantial improvement over their simple random sample counterparts.  相似文献   

8.
We consider nonparametric interval estimation for the population mean and quantiles based on a ranked set sample. The asymptotic distributions of the empirical log likelihood ratio statistic for the mean and quantiles are derived. Interval estimates of the population mean and quantiles are obtained by inverting the likelihood ratio statistic. Simulations are carried out to investigate and compare the performance of the empirical likelihood intervals with other known intervals.  相似文献   

9.
In this paper, we consider the problem of estimating the population proportion in pair ranked set sampling design. An unbiased estimator for the population proportion is proposed, and its theoretical properties are studied. It is shown that the estimator is more (less) efficient than its counterpart in simple random sampling (ranked set sampling). Asymptotic normality of the estimator is also established. Application of the suggested procedure is illustrated using a data set from an environmental study.  相似文献   

10.
Partially rank-ordered set (PROS) sampling is a generalization of ranked set sampling in which rankers are not required to fully rank the sampling units in each set, hence having more flexibility to perform the necessary judgemental ranking process. The PROS sampling has a wide range of applications in different fields ranging from environmental and ecological studies to medical research and it has been shown to be superior over ranked set sampling and simple random sampling for estimating the population mean. We study Fisher information content and uncertainty structure of the PROS samples and compare them with those of simple random sample (SRS) and ranked set sample (RSS) counterparts of the same size from the underlying population. We study uncertainty structure in terms of the Shannon entropy, Rényi entropy and Kullback–Leibler (KL) discrimination measures.  相似文献   

11.
Statistical inference based on a ranked set sample depends very much on the location of the quantified observations. A selective design which determines the location of the quantified observations in a ranked set sample is introduced. The paper investigates the effects of selective designs on one and two sample sign test statistics. The Pitman efficiencies of one- and two sample sign tests are calculated for selective designs and compared with ranked set samples of the same size. If the design quantifies observations at the center points, then the proposed procedure is superior to a ranked set sample of the same size in the sense of Pitman efficiency. Some practical problems are addressed for the two-sample sign test.  相似文献   

12.
A double L ranked set sampling (DLRSS) method is suggested for estimating the population mean. The DLRSS is compared with the simple random sampling (SRS), ranked set sampling (RSS) and L ranked set sampling (LRSS) methods based on the same number of measured units. The conditions for which the suggested estimator performs better than the other estimators are derived. It is found that, the suggested DLRSS estimator is an unbiased of the population mean, and is more efficient than its counterparts using SRS, RSS, and LRSS methods. Real data sets are used for illustration.  相似文献   

13.
For noninformative nonparametric estimation of finite population quantiles under simple random sampling, estimation based on the Polya posterior is similar to estimation based on the Bayesian approach developed by Ericson (J. Roy. Statist. Soc. Ser. B 31 (1969) 195) in that the Polya posterior distribution is the limit of Ericson's posterior distributions as the weight placed on the prior distribution diminishes. Furthermore, Polya posterior quantile estimates can be shown to be admissible under certain conditions. We demonstrate the admissibility of the sample median as an estimate of the population median under such a set of conditions. As with Ericson's Bayesian approach, Polya posterior-based interval estimates for population quantiles are asymptotically equivalent to the interval estimates obtained from standard frequentist approaches. In addition, for small to moderate sized populations, Polya posterior-based interval estimates for quantiles of a continuous characteristic of interest tend to agree with the standard frequentist interval estimates.  相似文献   

14.

Sign test using median ranked set samples (MRSS) is introduced and investigated. We show that, this test is more powerful than the sign tests based on simple random sample (SRS) and ranked set sample (RSS) for finite sample size. It is found that, when the set size of MRSS is odd, the null distribution of the MRSS sign test is the same as the sign test obtained by using SRS. The exact null distributions and the power functions, in case of finite sample sizes, of these tests are derived. Also, the asymptotic distribution of the MRSS sign tests are derived. Numerical comparison of the MRSS sign test power with the power of the SRS sign test and the RSS sign test is given. Illustration of the procedure, using real data set of bilirubin level in Jaundice babies who stay in neonatal intensive care is introduced.  相似文献   

15.
The theoretical literature on quantile and distribution function estimation in infinite populations is very rich, and invariance plays an important role in these studies. This is not the case for the commonly occurring problem of estimation of quantiles in finite populations. The latter is more complicated and interesting because an optimal strategy consists not only of an estimator, but also of a sampling design, and the estimator may depend on the design and on the labels of sampled individuals, whereas in iid sampling, design issues and labels do not exist.We study the estimation of finite population quantiles, with emphasis on estimators that are invariant under the group of monotone transformations of the data, and suitable invariant loss functions. Invariance under the finite group of permutation of the sample is also considered. We discuss nonrandomized and randomized estimators, best invariant and minimax estimators, and sampling strategies relative to different classes. Invariant loss functions and estimators in finite population sampling have a nonparametric flavor, and various natural combinatorial questions and tools arise as a result.  相似文献   

16.
A ranked set sampling procedure with unequal samples for positively skew distributions (RSSUS) is proposed and used to estimate the population mean. The estimators based on RSSUS are compared with the estimators based on ranked set sampling (RSS) and median ranked set sampling (MRSS) procedures. It is observed that the relative precisions of the estimators based on RSSUS are higher than those of the estimators based on RSS and MRSS procedures.  相似文献   

17.
Ranked set sampling is a sampling design that allows the experimenter to span the full range values in the population and it can be used widely in industrial, environmental and ecological studies. In this paper, we consider the information content of ranked set sampling in terms of extropy measure. It is shown that the ranked set sampling performs better than its simple random sample counterpart of the same size. Monotone properties and stochastic orders are investigated. Sharp bounds on the extropy of RSS data based on the projection method in the non-parametric set-up as well as Steffensen inequalities in the parametric context are established. The extropy measure can also be used as a discrimination tool between RSS and SRS data.  相似文献   

18.
In surveys of natural resources in agriculture, ecology, fisheries, forestry, environmental management, etc., cost-effective sampling methods are of major concern. In this paper, we propose a two-stage cluster sampling (TSCS) in integration with the hybrid ranked set sampling (HRSS)—named TSCS-HRSS—in the second stage of sampling for estimating the population mean. The TSCS-HRSS scheme encompasses several existing ranked set sampling (RSS) schemes and may help in selecting a smaller number of units to rank. It is shown both theoretically and numerically that the TSCS-HRSS provides an unbiased estimator of the population mean and it is more precise than the mean estimators based on TSCS with SRS and RSS schemes. An unbiased estimator of the variance of the proposed mean estimator is also derived. A similar trend is observed when studying the impact of imperfect rankings on the performance of the TSCS-HRSS based mean estimator.  相似文献   

19.
In this paper, a new sampling method is suggested, namely truncation-based ranked set samples (TBRSS) for estimating the population mean and median. The suggested method is compared with the simple random sampling (SRS), ranked set sampling (RSS), extreme ranked set sampling (ERSS) and median-ranked set sampling (MRSS) methods. It is shown that for estimating the population mean when the underlying distribution is symmetric, TBRSS estimator is unbiased and it is more efficient than the SRS estimator based on the same number of measured units. For asymmetric distributions considered in this study, TBRSS estimator is more efficient than the SRS for all considered distributions except for exponential distribution when the selection coefficient gets large. When compared with ERSS and MRSS methods, TBRSS performs well with respect to ERSS for all considered distributions except for U(0, 1) distribution, while TBRSS efficiency is higher than that of MRSS for U(0, 1) distribution. For estimating the population median, the TBRSS estimators have higher efficiencies when compared with SRS and ERSS. A real data set is used to illustrate the suggested method.  相似文献   

20.
ABSTRACT

Consider a two-sampling scheme in which an initial sample is first taken from the underlying population and then by assuming a suitable restriction on this sample, some more data points are observed as a new restricted sample. This sampling scheme is used to do inference about the lower quantiles of the underlying distribution. The results are compared with those of simple random sampling in view of mean squared error and Pitman’s measure of closeness criteria for exponential and uniform distributions. It will be shown that the proposed sampling scheme would improve the performance of the point estimators of the lower quantiles of the population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号