首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we develop a formal goodness-of-fit testing procedure for one-shot device testing data, in which each observation in the sample is either left censored or right censored. Such data are also called current status data. We provide an algorithm for calculating the nonparametric maximum likelihood estimate (NPMLE) of the unknown lifetime distribution based on such data. Then, we consider four different test statistics that can be used for testing the goodness-of-fit of accelerated failure time (AFT) model by the use of samples of residuals: a chi-square-type statistic based on the difference between the empirical and expected numbers of failures at each inspection time; two other statistics based on the difference between the NPMLE of the lifetime distribution obtained from one-shot device testing data and the distribution specified under the null hypothesis; as a final statistic, we use White's idea of comparing two estimators of the Fisher Information (FI) to propose a test statistic. We then compare these tests in terms of power, and draw some conclusions. Finally, we present an example to illustrate the proposed tests.  相似文献   

2.
The well-known chi-squared goodness-of-fit test for a multinomial distribution is generally biased when the observations are subject to misclassification. In Pardo and Zografos (2000) the problem was considered using a double sampling scheme and ø-divergence test statistics. A new problem appears if the null hypothesis is not simple because it is necessary to give estimators for the unknown parameters. In this paper the minimum ø-divergence estimators are considered and some of their properties are established. The proposed ø-divergence test statistics are obtained by calculating ø-divergences between probability density functions and by replacing parameters by their minimum ø-divergence estimators in the derived expressions. Asymptotic distributions of the new test statistics are also obtained. The testing procedure is illustrated with an example.  相似文献   

3.
In this paper we consider some non-parametric goodness-of-fit statistics for testing the partial Koziol–Green regression model. In this model, the response at a given covariate value is subject to random right censoring by two independent censoring times. One of these censoring times is informative in the sense that its survival function is some power of the survival function of the response. The goodness-of-fit statistics are based on an underlying empirical process for which large sample theory is obtained.  相似文献   

4.
In this paper we consider the problem of testing hypotheses in parametric models, when only the first r (of n) ordered observations are known.Using divergence measures, a procedure to test statistical hypotheses is proposed, Replacing the parameters by suitable estimators in the expresion of the divergence measure, the test statistics are obtained.Asymptotic distributions for these statistics are given in several cases when maximum likelihood estimators for truncated samples are considered.Applications of these results in testing statistical hypotheses, on the basis of truncated data, are presented.The small sample behavior of the proposed test statistics is analyzed in particular cases.A comparative study of power values is carried out by computer simulation.  相似文献   

5.
We develop and study in the framework of Pareto-type distributions a general class of kernel estimators for the second order parameter ρρ, a parameter related to the rate of convergence of a sequence of linearly normalized maximum values towards its limit. Inspired by the kernel goodness-of-fit statistics introduced in Goegebeur et al. (2008), for which the mean of the normal limiting distribution is a function of ρρ, we construct estimators for ρρ using ratios of ratios of differences of such goodness-of-fit statistics, involving different kernel functions as well as power transformations. The consistency of this class of ρρ estimators is established under some mild regularity conditions on the kernel function, a second order condition on the tail function 1−F of the underlying model, and for suitably chosen intermediate order statistics. Asymptotic normality is achieved under a further condition on the tail function, the so-called third order condition. Two specific examples of kernel statistics are studied in greater depth, and their asymptotic behavior illustrated numerically. The finite sample properties are examined by means of a simulation study.  相似文献   

6.
We consider the testing problems of the structural parameters for the multivariate linear functional relationship model. We treat the likelihood ratio test statistics and the test statistics based on the asymptotic distributions of the maximum likelihood estimators. We derive their asymptotic distributions under each null hypothesis respectively. A simulation study is made to evaluate how we can trust our asymptotic results when the sample size is rather small.  相似文献   

7.
In some inferential statistical methods, such as tests and confidence intervals, it is important to describe the stochastic behavior of statistical functionals, aside from their large sample properties. We study such a behavior in terms of the usual stochastic order. For this purpose, we introduce a generalized family of stochastic orders, which is referred to as transform orders, showing that it provides a flexible framework for deriving stochastic monotonicity results. Given that our general definition makes it possible to obtain some well known ordering relations as particular cases, we can easily apply our method to different families of functionals. These include some prominent inequality measures, such as the generalized entropy, the Gini index, and its generalizations. We also illustrate the applicability of our approach by determining the least favorable distribution, and the behavior of some bootstrap statistics, in some goodness-of-fit testing procedures.  相似文献   

8.
A mean residual life function (MRLF) is the remaining life expectancy of a subject who has survived to a certain time point. In the presence of covariates, regression models are needed to study the association between the MRLFs and covariates. If the survival time tends to be too long or the tail is not observed, the restricted mean residual life must be considered. In this paper, we propose the proportional restricted mean residual life model for fitting survival data under right censoring. For inference on the model parameters, martingale estimating equations are developed, and the asymptotic properties of the proposed estimators are established. In addition, a class of goodness-of-fit test is presented to assess the adequacy of the model. The finite sample behavior of the proposed estimators is evaluated through simulation studies, and the approach is applied to a set of real life data collected from a randomized clinical trial.  相似文献   

9.
ABSTRACT

In this paper, we first consider the entropy estimators introduced by Vasicek [A test for normality based on sample entropy. J R Statist Soc, Ser B. 1976;38:54–59], Ebrahimi et al. [Two measures of sample entropy. Stat Probab Lett. 1994;20:225–234], Yousefzadeh and Arghami [Testing exponentiality based on type II censored data and a new cdf estimator. Commun Stat – Simul Comput. 2008;37:1479–1499], Alizadeh Noughabi and Arghami [A new estimator of entropy. J Iran Statist Soc. 2010;9:53–64], and Zamanzade and Arghami [Goodness-of-fit test based on correcting moments of modified entropy estimator. J Statist Comput Simul. 2011;81:2077–2093], and the nonparametric distribution functions corresponding to them. We next introduce goodness-of-fit test statistics for the Laplace distribution based on the moments of nonparametric distribution functions of the aforementioned estimators. We obtain power estimates of the proposed test statistics with Monte Carlo simulation and compare them with the competing test statistics against various alternatives. Performance of the proposed new test statistics is illustrated in real cases.  相似文献   

10.
In this study, we consider stochastic one-way analysis of covariance model when the distribution of the error terms is long-tailed symmetric. Estimators of the unknown model parameters are obtained by using the maximum likelihood (ML) methodology. Iteratively reweighting algorithm is used to compute the ML estimates of the parameters. We also propose new test statistic based on ML estimators for testing the linear contrasts of the treatment effects. In the simulation study, we compare the efficiencies of the traditional least-squares (LS) estimators of the model parameters with the corresponding ML estimators. We also compare the power of the test statistics based on LS and ML estimators, respectively. A real-life example is given at the end of the study.  相似文献   

11.
In this paper, we first introduce two new estimators for estimating the entropy of absolutely continuous random variables. We then compare the introduced estimators with the existing entropy estimators, including the first of such estimators proposed by Dimitriev and Tarasenko [On the estimation functions of the probability density and its derivatives, Theory Probab. Appl. 18 (1973), pp. 628–633]. We next propose goodness-of-fit tests for normality based on the introduced entropy estimators and compare their powers with the powers of other entropy-based tests for normality. Our simulation results show that the introduced estimators perform well in estimating entropy and testing normality.  相似文献   

12.
Several asymptotically equivalent quantile estimators recently have been proposed as alternative to the conventional sample quantile. A variety of weight functions have been obtained either by subsampling considerations or by a kernel approach, analogous to density estimation techniques. Focusing on the former approach, a unified treatment of quantile estimators derived by subsampling is developed. Closely related to the generalized Harrell-Davis (HD) and Kaigh-Lachenbruch (KL) estimators, a new statistic performed well in Monte Carlo effiency comparisons presented here. Moreover, the new estimator shares certain desirable computational and finite-sample theeoretical properties with the KL estimator to yield convenient components representations for tests of uniformity and goodness-of-fit criteria. Similar analytic treatment for the HD statistics and kernel quantile estimators, however, is precluded by intractable eigenvalue problems.  相似文献   

13.
Because model misspecification can lead to inconsistent and inefficient estimators and invalid tests of hypotheses, testing for misspecification is critically important. We focus here on several general purpose goodness-of-fit tests which can be applied to assess the adequacy of a wide variety of parametric models without specifying an alternative model. Parametric bootstrap is the method of choice for computing the p-values of these tests however the proof of its consistency has never been rigourously shown in this setting. Using properties of locally asymptotically normal parametric models, we prove that under quite general conditions, the parametric bootstrap provides a consistent estimate of the null distribution of the statistics under investigation.  相似文献   

14.
We use bias-reduced estimators of high quantiles of heavy-tailed distributions, to introduce a new estimator for the mean in the case of infinite second moment. The asymptotic normality of the proposed estimator is established and checked in a simulation study, by four of the most popular goodness-of-fit tests. The accuracy of the resulting confidence intervals is evaluated as well. We also investigate the finite sample behavior and compare our estimator with some versions of Peng's estimator of the mean (namely those based on Hill, t-Hill and Huisman et al. extreme value index estimators). Moreover, we discuss the robustness of the tail index estimators used in this paper. Finally, our estimation procedure is applied to the well-known Danish fire insurance claims data set, to provide confidence bounds for the means of weekly and monthly maximum losses over a period of 10 years.  相似文献   

15.
Abstract.  In this paper, we carry out an in-depth investigation of diagnostic measures for assessing the influence of observations and model misspecification in the presence of missing covariate data for generalized linear models. Our diagnostic measures include case-deletion measures and conditional residuals. We use the conditional residuals to construct goodness-of-fit statistics for testing possible misspecifications in model assumptions, including the sampling distribution. We develop specific strategies for incorporating missing data into goodness-of-fit statistics in order to increase the power of detecting model misspecification. A resampling method is proposed to approximate the p -value of the goodness-of-fit statistics. Simulation studies are conducted to evaluate our methods and a real data set is analysed to illustrate the use of our various diagnostic measures.  相似文献   

16.
The minimum disparity estimators proposed by Lindsay (1994) for discrete models form an attractive subclass of minimum distance estimators which achieve their robustness without sacrificing first order efficiency at the model. Similarly, disparity test statistics are useful robust alternatives to the likelihood ratio test for testing of hypotheses in parametric models; they are asymptotically equivalent to the likelihood ratio test statistics under the null hypothesis and contiguous alternatives. Despite their asymptotic optimality properties, the small sample performance of many of the minimum disparity estimators and disparity tests can be considerably worse compared to the maximum likelihood estimator and the likelihood ratio test respectively. In this paper we focus on the class of blended weight Hellinger distances, a general subfamily of disparities, and study the effects of combining two different distances within this class to generate the family of “combined” blended weight Hellinger distances, and identify the members of this family which generally perform well. More generally, we investigate the class of "combined and penal-ized" blended weight Hellinger distances; the penalty is based on reweighting the empty cells, following Harris and Basu (1994). It is shown that some members of the combined and penalized family have rather attractive properties  相似文献   

17.
We investigate the power properties of Tiku’s 1980) goodness-of-fit statistics (defined in terms of the sample spacings) for testing the important Weibull distribution and show that these statistics are, on the whole, more powerful than their prominent competitors.  相似文献   

18.
Entropy-based goodness-of-fit test statistics can be established by estimating the entropy difference or Kullback–Leibler information, and several entropy-based test statistics based on various entropy estimators have been proposed. In this article, we first give comments on some problems resulting from not satisfying the moment constraints. We then study the choice of the entropy estimator by noting the reason why a test based on a better entropy estimator does not necessarily provide better powers.  相似文献   

19.
The ranked set samples and median ranked set samples in particular have been used extensively in the literature due to many reasons. In some situations, the experimenter may not be able to quantify or measure the response variable due to the high cost of data collection, however it may be easier to rank the subject of interest. The purpose of this article is to study the asymptotic distribution of the parameter estimators of the simple linear regression model. We show that these estimators using median ranked set sampling scheme converge in distribution to the normal distribution under weak conditions. Moreover, we derive large sample confidence intervals for the regression parameters as well as a large sample prediction interval for new observation. Also, we study the properties of these estimators for small sample setup and conduct a simulation study to investigate the behavior of the distributions of the proposed estimators.  相似文献   

20.
In this article, we assume that the distribution of the error terms is skew t in two-way analysis of variance (ANOVA). Skew t distribution is very flexible for modeling the symmetric and the skew datasets, since it reduces to the well-known normal, skew normal, and Student's t distributions. We obtain the estimators of the model parameters by using the maximum likelihood (ML) and the modified maximum likelihood (MML) methodologies. We also propose new test statistics based on these estimators for testing the equality of the treatment and the block means and also the interaction effect. The efficiencies of the ML and the MML estimators and the power values of the test statistics based on them are compared with the corresponding normal theory results via Monte Carlo simulation study. Simulation results show that the proposed methodologies are more preferable. We also show that the test statistics based on the ML estimators are more powerful than the test statistics based on the MML estimators as expected. However, power values of the test statistics based on the MML estimators are very close to the corresponding test statistics based on the ML estimators. At the end of the study, a real life example is given to show the implementation of the proposed methodologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号