首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider the semiparametric proportional hazards model for the cause-specific hazard function in analysis of competing risks data with missing cause of failure. The inverse probability weighted equation and augmented inverse probability weighted equation are proposed for estimating the regression parameters in the model, and their theoretical properties are established for inference. Simulation studies demonstrate that the augmented inverse probability weighted estimator is doubly robust and the proposed method is appropriate for practical use. The simulations also compare the proposed estimators with the multiple imputation estimator of Lu and Tsiatis (2001). The application of the proposed method is illustrated using data from a bone marrow transplant study.  相似文献   

2.
This paper addresses the problem of the probability density estimation in the presence of covariates when data are missing at random (MAR). The inverse probability weighted method is used to define a nonparametric and a semiparametric weighted probability density estimators. A regression calibration technique is also used to define an imputed estimator. It is shown that all the estimators are asymptotically normal with the same asymptotic variance as that of the inverse probability weighted estimator with known selection probability function and weights. Also, we establish the mean squared error (MSE) bounds and obtain the MSE convergence rates. A simulation is carried out to assess the proposed estimators in terms of the bias and standard error.  相似文献   

3.
This paper is concerned with model averaging procedure for varying-coefficient partially linear models with missing responses. The profile least-squares estimation process and inverse probability weighted method are employed to estimate regression coefficients of the partially restricted models, in which the propensity score is estimated by the covariate balancing propensity score method. The estimators of the linear parameters are shown to be asymptotically normal. Then we develop the focused information criterion, formulate the frequentist model averaging estimators and construct the corresponding confidence intervals. Some simulation studies are conducted to examine the finite sample performance of the proposed methods. We find that the covariate balancing propensity score improves the performance of the inverse probability weighted estimator. We also demonstrate the superiority of the proposed model averaging estimators over those of existing strategies in terms of mean squared error and coverage probability. Finally, our approach is further applied to a real data example.  相似文献   

4.
Estimating the effect of medical treatments on subject responses is one of the crucial problems in medical research. Matched‐pairs designs are commonly implemented in the field of medical research to eliminate confounding and improve efficiency. In this article, new estimators of treatment effects for heterogeneous matched‐pairs data are proposed. Asymptotic properties of the proposed estimators are derived. Simulation studies show that the proposed estimators have some advantages over the famous Heckman's estimator, the conditional maximum likelihood estimator, and the inverse probability weighted estimator. We apply the proposed methodology to a data set from a study of low‐birth‐weight infants.  相似文献   

5.
Summary.  Recurrent events models have had considerable attention recently. The majority of approaches show the consistency of parameter estimates under the assumption that censoring is independent of the recurrent events process of interest conditional on the covariates that are included in the model. We provide an overview of available recurrent events analysis methods and present an inverse probability of censoring weighted estimator for the regression parameters in the Andersen–Gill model that is commonly used for recurrent event analysis. This estimator remains consistent under informative censoring if the censoring mechanism is estimated consistently, and it generally improves on the naïve estimator for the Andersen–Gill model in the case of independent censoring. We illustrate the bias of ad hoc estimators in the presence of informative censoring with a simulation study and provide a data analysis of recurrent lung exacerbations in cystic fibrosis patients when some patients are lost to follow-up.  相似文献   

6.
Abstract.  We consider semiparametric models for which solution of Horvitz–Thompson or inverse probability weighted (IPW) likelihood equations with two-phase stratified samples leads to consistent and asymptotically Gaussian estimators of both Euclidean and non-parametric parameters. For Bernoulli (independent and identically distributed) sampling, standard theory shows that the Euclidean parameter estimator is asymptotically linear in the IPW influence function. By proving weak convergence of the IPW empirical process, and borrowing results on weighted bootstrap empirical processes, we derive a parallel asymptotic expansion for finite population stratified sampling. Several of our key results have been derived already for Cox regression with stratified case–cohort and more general survey designs. This paper is intended to help interpret this previous work and to pave the way towards a general Horvitz–Thompson approach to semiparametric inference with data from complex probability samples.  相似文献   

7.
This article is concerned with the estimation problem in the semiparametric isotonic regression model when the covariates are measured with additive errors and the response is missing at random. An inverse marginal probability weighted imputation approach is developed to estimate the regression parameters and a least-square approach under monotone constraint is employed to estimate the functional component. We show that the proposed estimator of the regression parameter is root-n consistent and asymptotically normal and the isotonic estimator of the functional component, at a fixed point, is cubic root-n consistent. A simulation study is conducted to examine the finite-sample properties of the proposed estimators. A data set is used to demonstrate the proposed approach.  相似文献   

8.
Abstract

In this article, we study the variable selection and estimation for linear regression models with missing covariates. The proposed estimation method is almost as efficient as the popular least-squares-based estimation method for normal random errors and empirically shown to be much more efficient and robust with respect to heavy tailed errors or outliers in the responses and covariates. To achieve sparsity, a variable selection procedure based on SCAD is proposed to conduct estimation and variable selection simultaneously. The procedure is shown to possess the oracle property. To deal with the covariates missing, we consider the inverse probability weighted estimators for the linear model when the selection probability is known or unknown. It is shown that the estimator by using estimated selection probability has a smaller asymptotic variance than that with true selection probability, thus is more efficient. Therefore, the important Horvitz-Thompson property is verified for penalized rank estimator with the covariates missing in the linear model. Some numerical examples are provided to demonstrate the performance of the estimators.  相似文献   

9.
Starting from the Rao (Commun Stat Theory Methods 20:3325–3340, 1991) regression estimator, we propose a class of estimators for the unknown mean of a survey variable when auxiliary information is available. The bias and the mean square error of the estimators belonging to the class are obtained and the expressions for the optimum parameters minimizing the asymptotic mean square error are given in closed form. A simple condition allowing us to improve the classical regression estimator is worked out. Finally, in order to compare the performance of some estimators with the regression one, a simulation study is carried out when some population parameters are supposed to be unknown.  相似文献   

10.
When data are missing, analyzing records that are completely observed may cause bias or inefficiency. Existing approaches in handling missing data include likelihood, imputation and inverse probability weighting. In this paper, we propose three estimators inspired by deleting some completely observed data in the regression setting. First, we generate artificial observation indicators that are independent of outcome given the observed data and draw inferences conditioning on the artificial observation indicators. Second, we propose a closely related weighting method. The proposed weighting method has more stable weights than those of the inverse probability weighting method (Zhao, L., Lipsitz, S., 1992. Designs and analysis of two-stage studies. Statistics in Medicine 11, 769–782). Third, we improve the efficiency of the proposed weighting estimator by subtracting the projection of the estimating function onto the nuisance tangent space. When data are missing completely at random, we show that the proposed estimators have asymptotic variances smaller than or equal to the variance of the estimator obtained from using completely observed records only. Asymptotic relative efficiency computation and simulation studies indicate that the proposed weighting estimators are more efficient than the inverse probability weighting estimators under wide range of practical situations especially when the missingness proportion is large.  相似文献   

11.
Abstract

The purpose of this paper is twofold. First, we investigate estimations in varying-coefficient partially linear errors-in-variables models with covariates missing at random. However, the estimators are often biased due to the existence of measurement errors, the bias-corrected profile least-squares estimator and local liner estimators for unknown parametric and coefficient functions are obtained based on inverse probability weighted method. The asymptotic properties of the proposed estimators both for the parameter and nonparametric parts are established. Second, we study asymptotic distributions of an empirical log-likelihood ratio statistic and maximum empirical likelihood estimator for the unknown parameter. Based on this, more accurate confidence regions of the unknown parameter can be constructed. The methods are examined through simulation studies and illustrated by a real data analysis.  相似文献   

12.
In this article we consider estimation of causal parameters in a marginal structural model for the discrete intensity of the treatment specific counting process (e.g. hazard of a treatment specific survival time) based on longitudinal observational data on treatment, covariates and survival. We define three estimators: the inverse probability of treatment weighted (IPTW) estimator, the maximum likelihood estimator (MLE), and a double robust (DR) estimator. The DR estimator is obtained by following a general methodology for constructing double robust estimating functions in censored data models as described in van der Laan and Robins (Unified Methods for Censored Longitudinal Data and Causality, 2002). The double-robust estimator is consistent and asymptotically linear when either the treatment mechanism or the partial likelihood of the observed data is consistently estimated. We illustrate the superiority of the DR estimator relative to the IPTW and ML estimators in a simulation study. The proposed methodology is also applied to estimate the causal effect of exercise on physical functioning in a longitudinal study of seniors in Sonoma County.  相似文献   

13.
Linear regression analysis has been studied extensively in a random censorship setting, but typically all of the censoring indicators are assumed to be observed. In this paper, we develop synthetic data methods for estimating regression parameters in a linear model when some censoring indicators are missing. We define estimators based on regression calibration, imputation, and inverse probability weighting techniques, and we prove all three estimators are asymptotically normal. The finite-sample performance of each estimator is evaluated via simulation. We illustrate our methods by assessing the effects of sex and age on the time to non-ambulatory progression for patients in a brain cancer clinical trial.  相似文献   

14.
Over the past decades, various principles for causal effect estimation have been proposed, all differing in terms of how they adjust for measured confounders: either via traditional regression adjustment, by adjusting for the expected exposure given those confounders (e.g., the propensity score), or by inversely weighting each subject's data by the likelihood of the observed exposure, given those confounders. When the exposure is measured with error, this raises the question whether these different estimation strategies might be differently affected and whether one of them is to be preferred for that reason. In this article, we investigate this by comparing inverse probability of treatment weighted (IPTW) estimators and doubly robust estimators for the exposure effect in linear marginal structural mean models (MSM) with G-estimators, propensity score (PS) adjusted estimators and ordinary least squares (OLS) estimators for the exposure effect in linear regression models. We find analytically that these estimators are equally affected when exposure misclassification is independent of the confounders, but not otherwise. Simulation studies reveal similar results for time-varying exposures and when the model of interest includes a logistic link.  相似文献   

15.
Abstract

In this article, we consider the inverse probability weighted estimators for a single-index model with missing covariates when the selection probabilities are known or unknown. It is shown that the estimator for the index parameter by using estimated selection probabilities has a smaller asymptotic variance than that with true selection probabilities, thus is more efficient. Therefore, the important Horvitz-Thompson property is verified for the index parameter in single index model. However, this difference disappears for the estimators of the link function. Some numerical examples and a real data application are also conducted to illustrate the performances of the estimators.  相似文献   

16.
The estimation of the variance for the GREG (general regression) estimator by weighted residuals is widely accepted as a method which yields estimators with good conditional properties. Since the optimal (regression) estimator shares the properties of GREG estimators which are used in the construction of weighted variance estimators, we introduce the weighting procedure also for estimating the variance of the optimal estimator. This method of variance estimation was originally presented in a seemingly ad hoc manner, and we shall discuss it from a conditional point of view and also look at an alternative way of utilizing the weights. Examples that stress conditional behaviour of estimators are then given for elementary sampling designs such as simple random sampling, stratified simple random sampling and Poisson sampling, where for the latter design we have conducted a small simulation study.  相似文献   

17.
The present paper considers the weighted mixed regression estimation of the coefficient vector in a linear regression model with stochastic linear restrictions binding the regression coefficients. We introduce a new two-parameter-weighted mixed estimator (TPWME) by unifying the weighted mixed estimator of Schaffrin and Toutenburg [1] and the two-parameter estimator (TPE) of Özkale and Kaç?ranlar [2]. This new estimator is a general estimator which includes the weighted mixed estimator, the TPE and the restricted two-parameter estimator (RTPE) proposed by Özkale and Kaç?ranlar [2] as special cases. Furthermore, we compare the TPWME with the weighted mixed estimator and the TPE with respect to the matrix mean square error criterion. A numerical example and a Monte Carlo simulation experiment are presented by using different estimators of the biasing parameters to illustrate some of the theoretical results.  相似文献   

18.
In this paper, we consider how to incorporate quantile information to improve estimator efficiency for regression model with missing covariates. We combine the quantile information with least-squares normal equations and construct an unbiased estimating equations (EEs). The lack of smoothness of the objective EEs is overcome by replacing them with smooth approximations. The maximum smoothed empirical likelihood (MSEL) estimators are established based on inverse probability weighted (IPW) smoothed EEs and their asymptotic properties are studied under some regular conditions. Moreover, we develop two novel testing procedures for the underlying model. The finite-sample performance of the proposed methodology is examined by simulation studies. A real example is used to illustrate our methods.  相似文献   

19.
We study non-Markov multistage models under dependent censoring regarding estimation of stage occupation probabilities. The individual transition and censoring mechanisms are linked together through covariate processes that affect both the transition intensities and the censoring hazard for the corresponding subjects. In order to adjust for the dependent censoring, an additive hazard regression model is applied to the censoring times, and all observed counting and “at risk” processes are subsequently given an inverse probability of censoring weighted form. We examine the bias of the Datta–Satten and Aalen–Johansen estimators of stage occupation probability, and also consider the variability of these estimators by studying their estimated standard errors and mean squared errors. Results from different simulation studies of frailty models indicate that the Datta–Satten estimator is approximately unbiased, whereas the Aalen–Johansen estimator either under- or overestimates the stage occupation probability due to the dependent nature of the censoring process. However, in our simulations, the mean squared error of the latter estimator tends to be slightly smaller than that of the former estimator. Studies on development of nephropathy among diabetics and on blood platelet recovery among bone marrow transplant patients are used as demonstrations on how the two estimation methods work in practice. Our analyses show that the Datta–Satten estimator performs well in estimating stage occupation probability, but that the censoring mechanism has to be quite selective before a deviation from the Aalen-Johansen estimator is of practical importance. N. Gunnes—Supported by a grant from the Norwegian Cancer Society.  相似文献   

20.
The mean vector associated with several independent variates from the exponential subclass of Hudson (1978) is estimated under weighted squared error loss. In particular, the formal Bayes and “Stein-like” estimators of the mean vector are given. Conditions are also given under which these estimators dominate any of the “natural estimators”. Our conditions for dominance are motivated by a result of Stein (1981), who treated the Np (θ, I) case with p ≥ 3. Stein showed that formal Bayes estimators dominate the usual estimator if the marginal density of the data is superharmonic. Our present exponential class generalization entails an elliptic differential inequality in some natural variables. Actually, we assume that each component of the data vector has a probability density function which satisfies a certain differential equation. While the densities of Hudson (1978) are particular solutions of this equation, other solutions are not of the exponential class if certain parameters are unknown. Our approach allows for the possibility of extending the parametric Stein-theory to useful nonexponential cases, but the problem of nuisance parameters is not treated here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号