首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper proposes a copula directional dependence by using a bivariate Gaussian copula beta regression with Stochastic Volatility (SV) models for marginal distributions. With the asymmetric copula generated by the composition of two Plackett copulas, we show that our SV copula directional dependence by the Gaussian copula beta regression model is superior to the Kim and Hwang (2016) copula directional dependence by an asymmetric GARCH model in terms of the percent relative efficiency of bias and mean squared error. To validate our proposed method with the real data, we use Brent Crude Daily Price (BRENT), West Texas Intermediate Daily Price (WTI), the Standard & Poor’s 500 (SP) and US 10-Year Treasury Constant Maturity Rate (TCM) so that our copula SV directional dependence is overall superior to the Kim and Hwang (2016) copula directional dependence by an asymmetric GARCH model in terms of precision by the percent relative efficiency of mean squared error. In terms of forecasting using the real financial data, we also show that the Bayesian SV model of the uniform transformed data by a copula conditional distribution yields an improvement on the volatility models such as GARCH and SV.  相似文献   

2.
Although both widely used in the financial industry, there is quite often very little justification why GARCH or stochastic volatility is preferred over the other in practice. Most of the relevant literature focuses on the comparison of the fit of various volatility models to a particular data set, which sometimes may be inconclusive due to the statistical similarities of both processes. With an ever growing interest among the financial industry in the risk of extreme price movements, it is natural to consider the selection between both models from an extreme value perspective. By studying the dependence structure of the extreme values of a given series, we are able to clearly distinguish GARCH and stochastic volatility models and to test statistically which one better captures the observed tail behaviour. We illustrate the performance of the method using some stock market returns and find that different volatility models may give a better fit to the upper or lower tails.  相似文献   

3.

Considering alternative models for exchange rates has always been a central issue in applied research. Despite this fact, formal likelihood-based comparisons of competing models are extremely rare. In this paper, we apply the Bayesian marginal likelihood concept to compare GARCH, stable, stable GARCH, stochastic volatility, and a new stable Paretian stochastic volatility model for seven major currencies. Inference is based on combining Monte Carlo methods with Laplace integration. The empirical results show that neither GARCH nor stable models are clear winners, and a GARCH model with stable innovations is the model best supported by the data.  相似文献   

4.
We develop a discrete-time affine stochastic volatility model with time-varying conditional skewness (SVS). Importantly, we disentangle the dynamics of conditional volatility and conditional skewness in a coherent way. Our approach allows current asset returns to be asymmetric conditional on current factors and past information, which we term contemporaneous asymmetry. Conditional skewness is an explicit combination of the conditional leverage effect and contemporaneous asymmetry. We derive analytical formulas for various return moments that are used for generalized method of moments (GMM) estimation. Applying our approach to S&P500 index daily returns and option data, we show that one- and two-factor SVS models provide a better fit for both the historical and the risk-neutral distribution of returns, compared to existing affine generalized autoregressive conditional heteroscedasticity (GARCH), and stochastic volatility with jumps (SVJ) models. Our results are not due to an overparameterization of the model: the one-factor SVS models have the same number of parameters as their one-factor GARCH competitors and less than the SVJ benchmark.  相似文献   

5.
In an asset return series, there is a conditional asymmetric dependence between current return and past volatility depending on the current return’s sign. To take into account the conditional asymmetry, we introduce new models for asset return dynamics in which frequencies of the up and down movements of asset price have conditionally independent Poisson distributions with stochastic intensities. The intensities are assumed to be stochastic recurrence equations of the GARCH type to capture the volatility clustering and the leverage effect. We provide an important linkage between our model and existing GARCH, explain how to apply maximum likelihood estimation to determine the parameters in the intensity model and show empirical results with the S&P 500 index return series.  相似文献   

6.
Reply     
ABSTRACT

In the class of stochastic volatility (SV) models, leverage effects are typically specified through the direct correlation between the innovations in both returns and volatility, resulting in the dynamic leverage (DL) model. Recently, two asymmetric SV models based on threshold effects have been proposed in the literature. As such models consider only the sign of the previous return and neglect its magnitude, this paper proposes a dynamic asymmetric leverage (DAL) model that accommodates the direct correlation as well as the sign and magnitude of the threshold effects. A special case of the DAL model with zero direct correlation between the innovations is the asymmetric leverage (AL) model. The dynamic asymmetric leverage models are estimated by the Monte Carlo likelihood (MCL) method. Monte Carlo experiments are presented to examine the finite sample properties of the estimator. For a sample size of T = 2000 with 500 replications, the sample means, standard deviations, and root mean squared errors of the MCL estimators indicate only a small finite sample bias. The empirical estimates for S&;P 500 and TOPIX financial returns, and USD/AUD and YEN/USD exchange rates, indicate that the DAL class, including the DL and AL models, is generally superior to threshold SV models with respect to AIC and BIC, with AL typically providing the best fit to the data.  相似文献   

7.
Abstract. In this paper, we study the detailed distributional properties of integrated non-Gaussian Ornstein–Uhlenbeck (intOU) processes. Both exact and approximate results are given. We emphasize the study of the tail behaviour of the intOU process. Our results have many potential applications in financial economics, as OU processes are used as models of instantaneous variance in stochastic volatility (SV) models. In this case, an intOU process can be regarded as a model of integrated variance. Hence, the tail behaviour of the intOU process will determine the tail behaviour of returns generated by SV models.  相似文献   

8.
In this paper we extend the closed-form estimator for the generalized autoregressive conditional heteroscedastic (GARCH(1,1)) proposed by Kristensen and Linton [A closed-form estimator for the GARCH(1,1) model. Econom Theory. 2006;22:323–337] to deal with additive outliers. It has the advantage that is per se more robust that the maximum likelihood estimator (ML) often used to estimate this model, it is easy to implement and does not require the use of any numerical optimization procedure. The robustification of the closed-form estimator is done by replacing the sample autocorrelations by a robust estimator of these correlations and by estimating the volatility using robust filters. The performance of our proposal in estimating the parameters and the volatility of the GARCH(1,1) model is compared with the proposals existing in the literature via intensive Monte Carlo experiments and the results of these experiments show that our proposal outperforms the ML and quasi-maximum likelihood estimators-based procedures. Finally, we fit the robust closed-form estimator and the benchmarks to one series of financial returns and analyse their performances in estimating and forecasting the volatility and the value-at-risk.  相似文献   

9.
In this paper, we compare the forecast ability of GARCH(1,1) and stochastic volatility models for interest rates. The stochastic volatility is estimated using Markov chain Monte Carlo methods. The comparison is based on daily data from 1994 to 1996 for the ten year swap rates for Deutsch Mark, Japanese Yen, and Pound Sterling. Various forecast horizons are considered. It turns out that forecasts based on stochastic volatility models are in most cases superiour to those obtained by GARCH(1,1) models.  相似文献   

10.
To capture mean and variance asymmetries and time‐varying volatility in financial time series, we generalize the threshold stochastic volatility (THSV) model and incorporate a heavy‐tailed error distribution. Unlike existing stochastic volatility models, this model simultaneously accounts for uncertainty in the unobserved threshold value and in the time‐delay parameter. Self‐exciting and exogenous threshold variables are considered to investigate the impact of a number of market news variables on volatility changes. Adopting a Bayesian approach, we use Markov chain Monte Carlo methods to estimate all unknown parameters and latent variables. A simulation experiment demonstrates good estimation performance for reasonable sample sizes. In a study of two international financial market indices, we consider two variants of the generalized THSV model, with US market news as the threshold variable. Finally, we compare models using Bayesian forecasting in a value‐at‐risk (VaR) study. The results show that our proposed model can generate more accurate VaR forecasts than can standard models.  相似文献   

11.
ARCH/GARCH representations of financial series usually attempt to model the serial correlation structure of squared returns. Although it is undoubtedly true that squared returns are correlated, there is increasing empirical evidence of stronger correlation in the absolute returns than in squared returns. Rather than assuming an explicit form for volatility, we adopt an approximation approach; we approximate the γth power of volatility by an asymmetric GARCH function with the power index γ chosen so that the approximation is optimum. Asymptotic normality is established for both the quasi-maximum likelihood estimator (qMLE) and the least absolute deviations estimator (LADE) in our approximation setting. A consequence of our approach is a relaxation of the usual stationarity condition for GARCH models. In an application to real financial datasets, the estimated values for γ are found to be close to one, consistent with the stylized fact that the strongest autocorrelation is found in the absolute returns. A simulation study illustrates that the qMLE is inefficient for models with heavy-tailed errors, whereas the LADE is more robust.  相似文献   

12.
In this article, we propose a simple alternative model to analyze the volatility of the financial time series. In the applications, the performance of this model is compared with the performance of the GARCH type models. Using GARCH, EGARCH, and the proposed models, we analyze the time series of the Bovespa and Dow Jones Industrial Average indexes. In the applications we can see that the proposed models have good performance compared with the usual GARCH type model.  相似文献   

13.
In this paper, efficient importance sampling (EIS) is used to perform a classical and Bayesian analysis of univariate and multivariate stochastic volatility (SV) models for financial return series. EIS provides a highly generic and very accurate procedure for the Monte Carlo (MC) evaluation of high-dimensional interdependent integrals. It can be used to carry out ML-estimation of SV models as well as simulation smoothing where the latent volatilities are sampled at once. Based on this EIS simulation smoother, a Bayesian Markov chain Monte Carlo (MCMC) posterior analysis of the parameters of SV models can be performed.  相似文献   

14.
In this paper, efficient importance sampling (EIS) is used to perform a classical and Bayesian analysis of univariate and multivariate stochastic volatility (SV) models for financial return series. EIS provides a highly generic and very accurate procedure for the Monte Carlo (MC) evaluation of high-dimensional interdependent integrals. It can be used to carry out ML-estimation of SV models as well as simulation smoothing where the latent volatilities are sampled at once. Based on this EIS simulation smoother, a Bayesian Markov chain Monte Carlo (MCMC) posterior analysis of the parameters of SV models can be performed.  相似文献   

15.
于孝建  王秀花 《统计研究》2018,35(1):104-116
本文将Hansen等(2012)的Realized GARCH模型扩展为包含日内收益率、日收益率以及已实现波动率的混频已实现GARCH模型(M-Realized GARCH模型)。该模型将日内交易分为前后两段,引入了混频均值方程,并对混频均值方程的残差分别建立条件波动率方程和已实现日波动率方程。本文采用2013-2016年沪深300指数混频数据,分别在扰动项服从正态分布、t分布和广义误差分布的假设下,采用损失函数、SPA检验、kupiec检验和动态分位数检验法,对GARCH、Realized GARCH和M-Realized GARCH模型的波动率预测和VaR度量效果对比研究,得出M-Realized GARCH模型能提高预测精度,且VaR实际失败率与理论失败率一致,失败发生之间不相关。最后,本文利用Block bootstrap方法抽样得到混频数据,模拟证明了M-Realized GARCH模型比Realized GARCH模型具有更高的预测精度。  相似文献   

16.
Abstract. We investigate simulation methodology for Bayesian inference in Lévy‐driven stochastic volatility (SV) models. Typically, Bayesian inference from such models is performed using Markov chain Monte Carlo (MCMC); this is often a challenging task. Sequential Monte Carlo (SMC) samplers are methods that can improve over MCMC; however, there are many user‐set parameters to specify. We develop a fully automated SMC algorithm, which substantially improves over the standard MCMC methods in the literature. To illustrate our methodology, we look at a model comprised of a Heston model with an independent, additive, variance gamma process in the returns equation. The driving gamma process can capture the stylized behaviour of many financial time series and a discretized version, fit in a Bayesian manner, has been found to be very useful for modelling equity data. We demonstrate that it is possible to draw exact inference, in the sense of no time‐discretization error, from the Bayesian SV model.  相似文献   

17.
ASSESSING AND TESTING FOR THRESHOLD NONLINEARITY IN STOCK RETURNS   总被引:2,自引:0,他引:2  
This paper proposes a test for threshold nonlinearity in a time series with generalized autore‐gressive conditional heteroscedasticity (GARCH) volatility dynamics. This test is used to examine whether financial returns on market indices exhibit asymmetric mean and volatility around a threshold value, using a double‐threshold GARCH model. The test adopts the reversible‐jump Markov chain Monte Carlo idea of Green, proposed in 1995, to calculate the posterior probabilities for a conventional GARCH model and a double‐threshold GARCH model. Posterior evidence favouring the threshold GARCH model indicates threshold nonlinearity with asymmetric behaviour of the mean and volatility. Simulation experiments demonstrate that the test works very well in distinguishing between the conventional GARCH and the double‐threshold GARCH models. In an application to eight international financial market indices, including the G‐7 countries, clear evidence supporting the hypothesis of threshold nonlinearity is discovered, simultaneously indicating an uneven mean‐reverting pattern and volatility asymmetry around a threshold return value.  相似文献   

18.
《Econometric Reviews》2007,26(5):557-566
Christoffersen and Diebold (2000) have introduced a runs test for forecastable volatility in aggregated returns. In this note, we compare the size and power of their runs test and the more conventional LM test for GARCH by Monte Carlo simulation. When the true daily process is GARCH, EGARCH, or stochastic volatility, the LM test has better power than the runs test for the moderate-horizon returns considered by Christoffersen and Diebold. For long-horizon returns, however, the tests have very similar power. We also consider a qualitative threshold GARCH model. For this process, we find that the runs test has greater power than the LM test. Theresults support the use of the runs test with aggregated returns.  相似文献   

19.
Abstract.  The generalized autoregressive conditional heteroscedastic (GARCH) model has been popular in the analysis of financial time series data with high volatility. Conventionally, the parameter estimation in GARCH models has been performed based on the Gaussian quasi-maximum likelihood. However, when the innovation terms have either heavy-tailed or skewed distributions, the quasi-maximum likelihood estimator (QMLE) does not function well. In order to remedy this defect, we propose the normal mixture QMLE (NM-QMLE), which is obtained from the normal mixture quasi-likelihood, and demonstrate that the NM-QMLE is consistent and asymptotically normal. Finally, we present simulation results and a real data analysis in order to illustrate our findings.  相似文献   

20.
We consider stochastic volatility models that are defined by an Ornstein–Uhlenbeck (OU)-Gamma time change. These models are most suitable for modeling financial time series and follow the general framework of the popular non-Gaussian OU models of Barndorff-Nielsen and Shephard. One current problem of these otherwise attractive nontrivial models is, in general, the unavailability of a tractable likelihood-based statistical analysis for the returns of financial assets, which requires the ability to sample from a nontrivial joint distribution. We show that an OU process driven by an infinite activity Gamma process, which is an OU-Gamma process, exhibits unique features, which allows one to explicitly describe and exactly sample from relevant joint distributions. This is a consequence of the OU structure and the calculus of Gamma and Dirichlet processes. We develop a particle marginal Metropolis–Hastings algorithm for this type of continuous-time stochastic volatility models and check its performance using simulated data. For illustration we finally fit the model to S&P500 index data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号