首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The variance of the Horvitz–Thompson estimator for a fixed size Conditional Poisson sampling scheme without replacement and with unequal inclusion probabilities is compared to the variance of the Hansen–Hurwitz estimator for a sampling scheme with replacement. We show, using a theorem by Gabler, that the sampling design without replacement is more efficient than the sampling design with replacement.  相似文献   

2.
This work aims at performing functional principal components analysis (FPCA) with Horvitz–Thompson estimators when the observations are curves collected with survey sampling techniques. One important motivation for this study is that FPCA is a dimension reduction tool which is the first step to develop model-assisted approaches that can take auxiliary information into account. FPCA relies on the estimation of the eigenelements of the covariance operator which can be seen as nonlinear functionals. Adapting to our functional context the linearization technique based on the influence function developed by Deville [1999. Variance estimation for complex statistics and estimators: linearization and residual techniques. Survey Methodology 25, 193–203], we prove that these estimators are asymptotically design unbiased and consistent. Under mild assumptions, asymptotic variances are derived for the FPCA’ estimators and consistent estimators of them are proposed. Our approach is illustrated with a simulation study and we check the good properties of the proposed estimators of the eigenelements as well as their variance estimators obtained with the linearization approach.  相似文献   

3.
In stratified sampling, methods for the allocation of effort among strata usually rely on some measure of within-stratum variance. If we do not have enough information about these variances, adaptive allocation can be used. In adaptive allocation designs, surveys are conducted in two phases. Information from the first phase is used to allocate the remaining units among the strata in the second phase. Brown et al. [Adaptive two-stage sequential sampling, Popul. Ecol. 50 (2008), pp. 239–245] introduced an adaptive allocation sampling design – where the final sample size was random – and an unbiased estimator. Here, we derive an unbiased variance estimator for the design, and consider a related design where the final sample size is fixed. Having a fixed final sample size can make survey-planning easier. We introduce a biased Horvitz–Thompson type estimator and a biased sample mean type estimator for the sampling designs. We conduct two simulation studies on honey producers in Kurdistan and synthetic zirconium distribution in a region on the moon. Results show that the introduced estimators are more efficient than the available estimators for both variable and fixed sample size designs, and the conventional unbiased estimator of stratified simple random sampling design. In order to evaluate efficiencies of the introduced designs and their estimator furthermore, we first review some well-known adaptive allocation designs and compare their estimator with the introduced estimators. Simulation results show that the introduced estimators are more efficient than available estimators of these well-known adaptive allocation designs.  相似文献   

4.
The sampling designs dependent on sample moments of auxiliary variables are well known. Lahiri (Bull Int Stat Inst 33:133–140, 1951) considered a sampling design proportionate to a sample mean of an auxiliary variable. Sing and Srivastava (Biometrika 67(1):205–209, 1980) proposed the sampling design proportionate to a sample variance while Wywiał (J Indian Stat Assoc 37:73–87, 1999) a sampling design proportionate to a sample generalized variance of auxiliary variables. Some other sampling designs dependent on moments of an auxiliary variable were considered e.g. in Wywiał (Some contributions to multivariate methods in, survey sampling. Katowice University of Economics, Katowice, 2003a); Stat Transit 4(5):779–798, 2000) where accuracy of some sampling strategies were compared, too.These sampling designs cannot be useful in the case when there are some censored observations of the auxiliary variable. Moreover, they can be much too sensitive to outliers observations. In these cases the sampling design proportionate to the order statistic of an auxiliary variable can be more useful. That is why such an unequal probability sampling design is proposed here. Its particular cases as well as its conditional version are considered, too. The sampling scheme implementing this sampling design is proposed. The inclusion probabilities of the first and second orders were evaluated. The well known Horvitz–Thompson estimator is taken into account. A ratio estimator dependent on an order statistic is constructed. It is similar to the well known ratio estimator based on the population and sample means. Moreover, it is an unbiased estimator of the population mean when the sample is drawn according to the proposed sampling design dependent on the appropriate order statistic.  相似文献   

5.
Semiparametric transformation models provide flexible regression models for survival analysis, including the Cox proportional hazards and the proportional odds models as special cases. We consider the application of semiparametric transformation models in case-cohort studies, where the covariate data are observed only on cases and on a subcohort randomly sampled from the full cohort. We first propose an approximate profile likelihood approach with full-cohort data, which amounts to the pseudo-partial likelihood approach of Zucker [2005. A pseudo-partial likelihood method for semiparametric survival regression with covariate errors. J. Amer. Statist. Assoc. 100, 1264–1277]. Simulation results show that our proposal is almost as efficient as the nonparametric maximum likelihood estimator. We then extend this approach to the case-cohort design, applying the Horvitz–Thompson weighting method to the estimating equations from the approximated profile likelihood. Two levels of weights can be utilized to achieve unbiasedness and to gain efficiency. The resulting estimator has a closed-form asymptotic covariance matrix, and is found in simulations to be substantially more efficient than the estimator based on martingale estimating equations. The extension to left-truncated data will be discussed. We illustrate the proposed method on data from a cardiovascular risk factor study conducted in Taiwan.  相似文献   

6.
We present a multi-level rotation sampling design which includes most of the existing rotation designs as special cases. When an estimator is defined under this sampling design, its variance and bias remain the same over survey months, but it is not so under other existing rotation designs. Using the properties of this multi-level rotation design, we derive the mean squared error (MSE) of the generalized composite estimator (GCE), incorporating the two types of correlations arising from rotating sample units. We show that the MSEs of other existing composite estimators currently used can be expressed as special cases of the GCE. Furthermore, since the coefficients of the GCE are unknown and difficult to determine, we present the minimum risk window estimator (MRWE) as an alternative estimator. This MRWE has the smallest MSE under this rotation design and yet, it is easy to calculate. The MRWE is unbiased for monthly and yearly changes and preserves the internal consistency in total. Our numerical study shows that the MRWE is as efficient as GCE and more efficient than the existing composite estimators and does not suffer from the drift problem [Fuller W.A., Rao J.N.K., 2001. A regression composite estimator with application to the Canadian Labour Force Survey. Surv. Methodol. 27 (2001) 45–51] unlike the regression composite estimators.  相似文献   

7.
With a growing interest in using non-representative samples to train prediction models for numerous outcomes it is necessary to account for the sampling design that gives rise to the data in order to assess the generalized predictive utility of a proposed prediction rule. After learning a prediction rule based on a non-uniform sample, it is of interest to estimate the rule's error rate when applied to unobserved members of the population. Efron (1986) proposed a general class of covariance penalty inflated prediction error estimators that assume the available training data are representative of the target population for which the prediction rule is to be applied. We extend Efron's estimator to the complex sample context by incorporating Horvitz–Thompson sampling weights and show that it is consistent for the true generalization error rate when applied to the underlying superpopulation. The resulting Horvitz–Thompson–Efron estimator is equivalent to dAIC, a recent extension of Akaike's information criteria to survey sampling data, but is more widely applicable. The proposed methodology is assessed with simulations and is applied to models predicting renal function obtained from the large-scale National Health and Nutrition Examination Study survey. The Canadian Journal of Statistics 48: 204–221; 2020 © 2019 Statistical Society of Canada  相似文献   

8.
Abstract

Many researchers used auxiliary information together with survey variable to improve the efficiency of population parameters like mean, variance, total and proportion. Ratio and regression estimation are the most commonly used methods that utilized auxiliary information in different ways to get the maximum benefits in the form of high precision of the estimators. Thompson first introduced the concept of Adaptive cluster sampling, which is an appropriate technique for collecting the samples from rare and clustered populations. In this article, a generalized exponential type estimator is proposed and its properties have been studied for the estimation of rare and highly clustered population variance using single auxiliary information. A numerical study is carried out on a real and artificial population to judge the performance of the proposed estimator over the competing estimators. It is shown that the proposed generalized exponential type estimator is more efficient than the adaptive and non adaptive estimators under conventional sampling design.  相似文献   

9.
For fixed size sampling designs with high entropy, it is well known that the variance of the Horvitz–Thompson estimator can be approximated by the Hájek formula. The interest of this asymptotic variance approximation is that it only involves the first order inclusion probabilities of the statistical units. We extend this variance formula when the variable under study is functional, and we prove, under general conditions on the regularity of the individual trajectories and the sampling design, that we can get a uniformly convergent estimator of the variance function of the Horvitz–Thompson estimator of the mean function. Rates of convergence to the true variance function are given for the rejective sampling. We deduce, under conditions on the entropy of the sampling design, that it is possible to build confidence bands whose coverage is asymptotically the desired one via simulation of Gaussian processes with variance function given by the Hájek formula. Finally, the accuracy of the proposed variance estimator is evaluated on samples of electricity consumption data measured every half an hour over a period of 1 week.  相似文献   

10.
A class of sampling two units without replacement with inclusion probability proportional to size is proposed in this article. Many different well known probability proportional to size sampling designs are special cases from this class. The first and second inclusion probabilities of this class satisfy important properties and provide a non-negative variance estimator of the Horvitz and Thompson estimator for the population total. Suitable choice for the first and second inclusion probabilities from this class can be used to reduce the variance estimator of the Horvitz and Thompson estimator. Comparisons between different proportional to size sampling designs through real data and artificial examples are given. Examples show that the minimum variance of the Horvitz and Thompson estimator obtained from the proposed design is not attainable for the most cases at any of the well known designs.  相似文献   

11.
The theoretical literature on quantile and distribution function estimation in infinite populations is very rich, and invariance plays an important role in these studies. This is not the case for the commonly occurring problem of estimation of quantiles in finite populations. The latter is more complicated and interesting because an optimal strategy consists not only of an estimator, but also of a sampling design, and the estimator may depend on the design and on the labels of sampled individuals, whereas in iid sampling, design issues and labels do not exist.We study the estimation of finite population quantiles, with emphasis on estimators that are invariant under the group of monotone transformations of the data, and suitable invariant loss functions. Invariance under the finite group of permutation of the sample is also considered. We discuss nonrandomized and randomized estimators, best invariant and minimax estimators, and sampling strategies relative to different classes. Invariant loss functions and estimators in finite population sampling have a nonparametric flavor, and various natural combinatorial questions and tools arise as a result.  相似文献   

12.
The estimation of the variance for the GREG (general regression) estimator by weighted residuals is widely accepted as a method which yields estimators with good conditional properties. Since the optimal (regression) estimator shares the properties of GREG estimators which are used in the construction of weighted variance estimators, we introduce the weighting procedure also for estimating the variance of the optimal estimator. This method of variance estimation was originally presented in a seemingly ad hoc manner, and we shall discuss it from a conditional point of view and also look at an alternative way of utilizing the weights. Examples that stress conditional behaviour of estimators are then given for elementary sampling designs such as simple random sampling, stratified simple random sampling and Poisson sampling, where for the latter design we have conducted a small simulation study.  相似文献   

13.
Ratio and product estimators in stratified random sampling   总被引:1,自引:0,他引:1  
Khoshnevisan et al. [2007. A general family of estimators for estimating population mean using known value of some population parameter(s). Far East Journal of Theoretical Statistics 22, 181–191] have introduced a family of estimators using auxiliary information in simple random sampling. They have showed that these estimators are more efficient than the classical ratio estimator and that the minimum value of the mean square error (MSE) of this family is equal to the value of MSE of regression estimator. In this article, we adapt the estimators in this family to the stratified random sampling and motivated by the estimator in Searls [1964. Utilization of known coefficient of kurtosis in the estimation procedure of variance. Journal of the American Statistical Association 59, 1225–1226], we also propose a new family of estimators for the stratified random sampling. The expressions of bias and MSE of the adapted and proposed families are derived in a general form. Besides, considering the minimum cases of these MSE equations, the efficient conditions between the adapted and proposed families are obtained. Moreover, these theoretical findings are supported by a numerical example with original data.  相似文献   

14.
Sarjinder Singh 《Statistics》2013,47(3):566-574
In this note, a dual problem to the calibration of design weights of the Deville and Särndal [Calibration estimators in survey sampling, J. Amer. Statist. Assoc. 87 (1992), pp. 376–382] method has been considered. We conclude that the chi-squared distance between the design weights and the calibrated weights equals the square of the standardized Z-score obtained by the difference between the known population total of the auxiliary variable and its corresponding Horvitz and Thompson [A generalization of sampling without replacement from a finite universe, J. Amer. Statist. Assoc. 47 (1952), pp. 663–685] estimator divided by the sample standard deviation of the auxiliary variable to obtain the linear regression estimator in survey sampling.  相似文献   

15.
Two‐phase sampling is often used for estimating a population total or mean when the cost per unit of collecting auxiliary variables, x, is much smaller than the cost per unit of measuring a characteristic of interest, y. In the first phase, a large sample s1 is drawn according to a specific sampling design p(s1) , and auxiliary data x are observed for the units is1 . Given the first‐phase sample s1 , a second‐phase sample s2 is selected from s1 according to a specified sampling design {p(s2s1) } , and (y, x) is observed for the units is2 . In some cases, the population totals of some components of x may also be known. Two‐phase sampling is used for stratification at the second phase or both phases and for regression estimation. Horvitz–Thompson‐type variance estimators are used for variance estimation. However, the Horvitz–Thompson ( Horvitz & Thompson, J. Amer. Statist. Assoc. 1952 ) variance estimator in uni‐phase sampling is known to be highly unstable and may take negative values when the units are selected with unequal probabilities. On the other hand, the Sen–Yates–Grundy variance estimator is relatively stable and non‐negative for several unequal probability sampling designs with fixed sample sizes. In this paper, we extend the Sen–Yates–Grundy ( Sen , J. Ind. Soc. Agric. Statist. 1953; Yates & Grundy , J. Roy. Statist. Soc. Ser. B 1953) variance estimator to two‐phase sampling, assuming fixed first‐phase sample size and fixed second‐phase sample size given the first‐phase sample. We apply the new variance estimators to two‐phase sampling designs with stratification at the second phase or both phases. We also develop Sen–Yates–Grundy‐type variance estimators of the two‐phase regression estimators that make use of the first‐phase auxiliary data and known population totals of some of the auxiliary variables.  相似文献   

16.
In this paper, a new estimator for estimating the proportion of a potentially sensitive attribute in survey sampling has been introduced. The proposed estimator makes use of higher order moments of the scrambling variable at the estimation stage. The proposed estimator has been found to be more efficient than the estimator due to Kuk [1990. Asking sensitive questions indirectly. Biomerika 77(2), 436–438] and Franklin [1989. A comparison of estimators for randomized response sampling with continuous distributions from a dichotomous population. Comm. Statist. Theory Methods 18, 489–505] type estimators in randomized response sampling. Recently, Guerriero and Sandri [2007. A note on the comparison of some randomized response procedures. J. Statist. Plann. Inference 137, 2184–2190] have shown that the family of randomized response models proposed by Kuk [1990. Asking sensitive questions indirectly. Biomerika 77(2), 436–438] is better than the Simmons’ family in terms of efficiency and protection.  相似文献   

17.
贺建风 《统计研究》2018,35(4):104-116
在现代抽样调查中,校准估计方法能够通过有效利用辅助信息来提高估计量的精度,多重抽样框抽样调查则不仅可以解决单一抽样框覆盖不全的问题,还可以节约抽样设计阶段的成本。本文将这两种现代抽样估计与设计方法进行结合,将校准估计方法引入到基于多重抽样框的抽样调查体系中,在实现节约调查成本的同时,还能够提高估计量的精度。文章首先按照分离抽样框与组合抽样框估计方法的分类思路,对传统多重抽样框估计方法进行系统梳理;然后在最短距离法校准估计的分析框架下,按照调查时所能掌握辅助信息的具体情况,给出了两类多重抽样框估计情形下的各种不同形式的校准估计量;随后数值分析的比较结果也表明在多重抽样框中校准估计量的估计效率明显优于传统估计量;最后对本文研究进行总结的基础上,给出了我国抽样实践中应用这套先进抽样估计方法体系的展望。  相似文献   

18.
In this article, a chain ratio-product type exponential estimator is proposed for estimating finite population mean in stratified random sampling with two auxiliary variables under double sampling design. Theoretical and empirical results show that the proposed estimator is more efficient than the existing estimators, i.e., usual stratified random sample mean estimator, Chand (1975) chain ratio estimator, Choudhary and Singh (2012) estimator, chain ratio-product-type estimator, Sahoo et al. (1993) difference type estimator, and Kiregyera (1984) regression-type estimator. Two data sets are used to illustrate the performances of different estimators.  相似文献   

19.
A balanced sampling design has the interesting property that Horvitz–Thompson estimators of totals for a set of balancing variables are equal to the totals we want to estimate, therefore the variance of Horvitz–Thompson estimators of variables of interest are reduced in function of their correlations with the balancing variables. Since it is hard to derive an analytic expression for the joint inclusion probabilities, we derive a general approximation of variance based on a residual technique. This approximation is useful even in the particular case of unequal probability sampling with fixed sample size. Finally, a set of numerical studies with an original methodology allows to validate this approximation.  相似文献   

20.
Let’s consider a finite population of P units, each of them assumes a specific amount of the quantitative variable X. Moreover we assume that the range of values of X is subdivided into k classes and the sampling data come out from a two stage stratified sampling. The main purpose of the work is to determine the estimators, as well as their asymptotic distribution, of the partial means of classes, each of them is defined as a non linear function of the other parameters. Particularly, we are interested in determining the linear approximation estimators and, under convergence theorems, the asymptotic distribution. Afterwards we define the estimator of the vector of the partial means of classes and its asymptotic convergence to multivariate normal distribution is determined. These results are useful to develop simultaneous inferential procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号