首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
This article develops the adaptive elastic net generalized method of moments (GMM) estimator in large-dimensional models with potentially (locally) invalid moment conditions, where both the number of structural parameters and the number of moment conditions may increase with the sample size. The basic idea is to conduct the standard GMM estimation combined with two penalty terms: the adaptively weighted lasso shrinkage and the quadratic regularization. It is a one-step procedure of valid moment condition selection, nonzero structural parameter selection (i.e., model selection), and consistent estimation of the nonzero parameters. The procedure achieves the standard GMM efficiency bound as if we know the valid moment conditions ex ante, for which the quadratic regularization is important. We also study the tuning parameter choice, with which we show that selection consistency still holds without assuming Gaussianity. We apply the new estimation procedure to dynamic panel data models, where both the time and cross-section dimensions are large. The new estimator is robust to possible serial correlations in the regression error terms.  相似文献   

2.
The problem of constructing nonlinear regression models is investigated to analyze data with complex structure. We introduce radial basis functions with hyperparameter that adjusts the amount of overlapping basis functions and adopts the information of the input and response variables. By using the radial basis functions, we construct nonlinear regression models with help of the technique of regularization. Crucial issues in the model building process are the choices of a hyperparameter, the number of basis functions and a smoothing parameter. We present information-theoretic criteria for evaluating statistical models under model misspecification both for distributional and structural assumptions. We use real data examples and Monte Carlo simulations to investigate the properties of the proposed nonlinear regression modeling techniques. The simulation results show that our nonlinear modeling performs well in various situations, and clear improvements are obtained for the use of the hyperparameter in the basis functions.  相似文献   

3.
In high-dimensional regression problems regularization methods have been a popular choice to address variable selection and multicollinearity. In this paper we study bridge regression that adaptively selects the penalty order from data and produces flexible solutions in various settings. We implement bridge regression based on the local linear and quadratic approximations to circumvent the nonconvex optimization problem. Our numerical study shows that the proposed bridge estimators are a robust choice in various circumstances compared to other penalized regression methods such as the ridge, lasso, and elastic net. In addition, we propose group bridge estimators that select grouped variables and study their asymptotic properties when the number of covariates increases along with the sample size. These estimators are also applied to varying-coefficient models. Numerical examples show superior performances of the proposed group bridge estimators in comparisons with other existing methods.  相似文献   

4.
The purpose of this study is to highlight the application of sparse logistic regression models in dealing with prediction of tumour pathological subtypes based on lung cancer patients'' genomic information. We consider sparse logistic regression models to deal with the high dimensionality and correlation between genomic regions. In a hierarchical likelihood (HL) method, it is assumed that the random effects follow a normal distribution and its variance is assumed to follow a gamma distribution. This formulation considers ridge and lasso penalties as special cases. We extend the HL penalty to include a ridge penalty (called ‘HLnet’) in a similar principle of the elastic net penalty, which is constructed from lasso penalty. The results indicate that the HL penalty creates more sparse estimates than lasso penalty with comparable prediction performance, while HLnet and elastic net penalties have the best prediction performance in real data. We illustrate the methods in a lung cancer study.  相似文献   

5.
We consider the problem of selecting variables in factor analysis models. The $L_1$ regularization procedure is introduced to perform an automatic variable selection. In the factor analysis model, each variable is controlled by multiple factors when there are more than one underlying factor. We treat parameters corresponding to the multiple factors as grouped parameters, and then apply the group lasso. Furthermore, the weight of the group lasso penalty is modified to obtain appropriate estimates and improve the performance of variable selection. Crucial issues in this modeling procedure include the selection of the number of factors and a regularization parameter. Choosing these parameters can be viewed as a model selection and evaluation problem. We derive a model selection criterion for evaluating the factor analysis model via the weighted group lasso. Monte Carlo simulations are conducted to investigate the effectiveness of the proposed procedure. A real data example is also given to illustrate our procedure. The Canadian Journal of Statistics 40: 345–361; 2012 © 2012 Statistical Society of Canada  相似文献   

6.
Regularization methods for simultaneous variable selection and coefficient estimation have been shown to be effective in quantile regression in improving the prediction accuracy. In this article, we propose the Bayesian bridge for variable selection and coefficient estimation in quantile regression. A simple and efficient Gibbs sampling algorithm was developed for posterior inference using a scale mixture of uniform representation of the Bayesian bridge prior. This is the first work to discuss regularized quantile regression with the bridge penalty. Both simulated and real data examples show that the proposed method often outperforms quantile regression without regularization, lasso quantile regression, and Bayesian lasso quantile regression.  相似文献   

7.
We propose marginalized lasso, a new nonconvex penalization for variable selection in regression problem. The marginalized lasso penalty is motivated from integrating out the penalty parameter in the original lasso penalty with a gamma prior distribution. This study provides a thresholding rule and a lasso-based iterative algorithm for parameter estimation in the marginalized lasso. We also provide a coordinate descent algorithm to efficiently optimize the marginalized lasso penalized regression. Numerical comparison studies are provided to demonstrate its competitiveness over the existing sparsity-inducing penalizations and suggest some guideline for tuning parameter selection.  相似文献   

8.
Identification of influential genes and clinical covariates on the survival of patients is crucial because it can lead us to better understanding of underlying mechanism of diseases and better prediction models. Most of variable selection methods in penalized Cox models cannot deal properly with categorical variables such as gender and family history. The group lasso penalty can combine clinical and genomic covariates effectively. In this article, we introduce an optimization algorithm for Cox regression with group lasso penalty. We compare our method with other methods on simulated and real microarray data sets.  相似文献   

9.
The graphical lasso has now become a useful tool to estimate high-dimensional Gaussian graphical models, but its practical applications suffer from the problem of choosing regularization parameters in a data-dependent way. In this article, we propose a model-averaged method for estimating sparse inverse covariance matrices for Gaussian graphical models. We consider the graphical lasso regularization path as the model space for Bayesian model averaging and use Markov chain Monte Carlo techniques for the regularization path point selection. Numerical performance of our method is investigated using both simulated and real datasets, in comparison with some state-of-art model selection procedures.  相似文献   

10.
High-dimensional predictive models, those with more measurements than observations, require regularization to be well defined, perform well empirically, and possess theoretical guarantees. The amount of regularization, often determined by tuning parameters, is integral to achieving good performance. One can choose the tuning parameter in a variety of ways, such as through resampling methods or generalized information criteria. However, the theory supporting many regularized procedures relies on an estimate for the variance parameter, which is complicated in high dimensions. We develop a suite of information criteria for choosing the tuning parameter in lasso regression by leveraging the literature on high-dimensional variance estimation. We derive intuition showing that existing information-theoretic approaches work poorly in this setting. We compare our risk estimators to existing methods with an extensive simulation and derive some theoretical justification. We find that our new estimators perform well across a wide range of simulation conditions and evaluation criteria.  相似文献   

11.
Sparsity-inducing penalties are useful tools for variable selection and are also effective for regression problems where the data are functions. We consider the problem of selecting not only variables but also decision boundaries in multiclass logistic regression models for functional data, using sparse regularization. The parameters of the functional logistic regression model are estimated in the framework of the penalized likelihood method with the sparse group lasso-type penalty, and then tuning parameters for the model are selected using the model selection criterion. The effectiveness of the proposed method is investigated through simulation studies and the analysis of a gene expression data set.  相似文献   

12.
We consider bridge regression models, which can produce a sparse or non-sparse model by controlling a tuning parameter in the penalty term. A crucial part of a model building strategy is the selection of the values for adjusted parameters, such as regularization and tuning parameters. Indeed, this can be viewed as a problem in selecting and evaluating the model. We propose a Bayesian selection criterion for evaluating bridge regression models. This criterion enables us to objectively select the values of the adjusted parameters. We investigate the effectiveness of our proposed modeling strategy with some numerical examples.  相似文献   

13.
Abstract. We consider a function defined as the pointwise minimization of a doubly index random process. We are interested in the weak convergence of the minimizer in the space of bounded functions. Such convergence results can be applied in the context of penalized M‐estimation, that is, when the random process to minimize is expressed as a goodness‐of‐fit term plus a penalty term multiplied by a penalty weight. This weight is called the regularization parameter and the minimizing function the regularization path. The regularization path can be seen as a collection of estimators indexed by the regularization parameter. We obtain a consistency result and a central limit theorem for the regularization path in a functional sense. Various examples are provided, including the ?1‐regularization path for general linear models, the ?1‐ or ?2‐regularization path of the least absolute deviation regression and the Akaike information criterion.  相似文献   

14.
In a calibration of near-infrared (NIR) instrument, we regress some chemical compositions of interest as a function of their NIR spectra. In this process, we have two immediate challenges: first, the number of variables exceeds the number of observations and, second, the multicollinearity between variables are extremely high. To deal with the challenges, prediction models that produce sparse solutions have recently been proposed. The term ‘sparse’ means that some model parameters are zero estimated and the other parameters are estimated naturally away from zero. In effect, a variable selection is embedded in the model to potentially achieve a better prediction. Many studies have investigated sparse solutions for latent variable models, such as partial least squares and principal component regression, and for direct regression models such as ridge regression (RR). However, in the latter, it mainly involves an L1 norm penalty to the objective function such as lasso regression. In this study, we investigate new sparse alternative models for RR within a random effects model framework, where we consider Cauchy and mixture-of-normals distributions on the random effects. The results indicate that the mixture-of-normals model produces a sparse solution with good prediction and better interpretation. We illustrate the methods using NIR spectra datasets from milk and corn specimens.  相似文献   

15.
Based on B-spline basis functions and smoothly clipped absolute deviation (SCAD) penalty, we present a new estimation and variable selection procedure based on modal regression for partially linear additive models. The outstanding merit of the new method is that it is robust against outliers or heavy-tail error distributions and performs no worse than the least-square-based estimation for normal error case. The main difference is that the standard quadratic loss is replaced by a kernel function depending on a bandwidth that can be automatically selected based on the observed data. With appropriate selection of the regularization parameters, the new method possesses the consistency in variable selection and oracle property in estimation. Finally, both simulation study and real data analysis are performed to examine the performance of our approach.  相似文献   

16.
The problem of modeling the relationship between a set of covariates and a multivariate response with correlated components often arises in many areas of research such as genetics, psychometrics, signal processing. In the linear regression framework, such task can be addressed using a number of existing methods. In the high-dimensional sparse setting, most of these methods rely on the idea of penalization in order to efficiently estimate the regression matrix. Examples of such methods include the lasso, the group lasso, the adaptive group lasso or the simultaneous variable selection (SVS) method. Crucially, a suitably chosen penalty also allows for an efficient exploitation of the correlation structure within the multivariate response. In this paper we introduce a novel variant of such method called the adaptive SVS, which is closely linked with the adaptive group lasso. Via a simulation study we investigate its performance in the high-dimensional sparse regression setting. We provide a comparison with a number of other popular methods under different scenarios and show that the adaptive SVS is a powerful tool for efficient recovery of signal in such setting. The methods are applied to genetic data.  相似文献   

17.
18.
Order selection is an important step in the application of finite mixture models. Classical methods such as AIC and BIC discourage complex models with a penalty directly proportional to the number of mixing components. In contrast, Chen and Khalili propose to link the penalty to two types of overfitting. In particular, they introduce a regularization penalty to merge similar subpopulations in a mixture model, where the shrinkage idea of regularized regression is seamlessly employed. However, the new method requires an effective and efficient algorithm. When the popular expectation-maximization (EM)-algorithm is used, we need to maximize a nonsmooth and nonconcave objective function in the M-step, which is computationally challenging. In this article, we show that such an objective function can be transformed into a sum of univariate auxiliary functions. We then design an iterative thresholding descent algorithm (ITD) to efficiently solve the associated optimization problem. Unlike many existing numerical approaches, the new algorithm leads to sparse solutions and thereby avoids undesirable ad hoc steps. We establish the convergence of the ITD and further assess its empirical performance using both simulations and real data examples.  相似文献   

19.
In a nonlinear regression model based on a regularization method, selection of appropriate regularization parameters is crucial. Information criteria such as generalized information criterion (GIC) and generalized Bayesian information criterion (GBIC) are useful for selecting the optimal regularization parameters. However, the optimal parameter is often determined by calculating information criterion for all candidate regularization parameters, and so the computational cost is high. One simple method by which to accomplish this is to regard GIC or GBIC as a function of the regularization parameters and to find a value minimizing GIC or GBIC. However, it is unclear how to solve the optimization problem. In the present article, we propose an efficient Newton–Raphson type iterative method for selecting optimal regularization parameters with respect to GIC or GBIC in a nonlinear regression model based on basis expansions. This method reduces the computational time remarkably compared to the grid search and can select more suitable regularization parameters. The effectiveness of the method is illustrated through real data examples.  相似文献   

20.
In this article, the partially linear covariate-adjusted regression models are considered, and the penalized least-squares procedure is proposed to simultaneously select variables and estimate the parametric components. The rate of convergence and the asymptotic normality of the resulting estimators are established under some regularization conditions. With the proper choices of the penalty functions and tuning parameters, it is shown that the proposed procedure can be as efficient as the oracle estimators. Some Monte Carlo simulation studies and a real data application are carried out to assess the finite sample performances for the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号