首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Understanding the dose–response relationship is a key objective in Phase II clinical development. Yet, designing a dose‐ranging trial is a challenging task, as it requires identifying the therapeutic window and the shape of the dose–response curve for a new drug on the basis of a limited number of doses. Adaptive designs have been proposed as a solution to improve both quality and efficiency of Phase II trials as they give the possibility to select the dose to be tested as the trial goes. In this article, we present a ‘shapebased’ two‐stage adaptive trial design where the doses to be tested in the second stage are determined based on the correlation observed between efficacy of the doses tested in the first stage and a set of pre‐specified candidate dose–response profiles. At the end of the trial, the data are analyzed using the generalized MCP‐Mod approach in order to account for model uncertainty. A simulation study shows that this approach gives more precise estimates of a desired target dose (e.g. ED70) than a single‐stage (fixed‐dose) design and performs as well as a two‐stage D‐optimal design. We present the results of an adaptive model‐based dose‐ranging trial in multiple sclerosis that motivated this research and was conducted using the presented methodology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Designs for early phase dose finding clinical trials typically are either phase I based on toxicity, or phase I-II based on toxicity and efficacy. These designs rely on the implicit assumption that the dose of an experimental agent chosen using these short-term outcomes will maximize the agent's long-term therapeutic success rate. In many clinical settings, this assumption is not true. A dose selected in an early phase oncology trial may give suboptimal progression-free survival or overall survival time, often due to a high rate of relapse following response. To address this problem, a new family of Bayesian generalized phase I-II designs is proposed. First, a conventional phase I-II design based on short-term outcomes is used to identify a set of candidate doses, rather than selecting one dose. Additional patients then are randomized among the candidates, patients are followed for a predefined longer time period, and a final dose is selected to maximize the long-term therapeutic success rate, defined in terms of duration of response. Dose-specific sample sizes in the randomization are determined adaptively to obtain a desired level of selection reliability. The design was motivated by a phase I-II trial to find an optimal dose of natural killer cells as targeted immunotherapy for recurrent or treatment-resistant B-cell hematologic malignancies. A simulation study shows that, under a range of scenarios in the context of this trial, the proposed design has much better performance than two conventional phase I-II designs.  相似文献   

3.
The goal of a phase I clinical trial in oncology is to find a dose with acceptable dose‐limiting toxicity rate. Often, when a cytostatic drug is investigated or when the maximum tolerated dose is defined using a toxicity score, the main endpoint in a phase I trial is continuous. We propose a new method to use in a dose‐finding trial with continuous endpoints. The new method selects the right dose on par with other methods and provides more flexibility in assigning patients to doses in the course of the trial when the rate of accrual is fast relative to the follow‐up time. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
One of the primary purposes of an oncology dose‐finding trial is to identify an optimal dose (OD) that is both tolerable and has an indication of therapeutic benefit for subjects in subsequent clinical trials. In addition, it is quite important to accelerate early stage trials to shorten the entire period of drug development. However, it is often challenging to make adaptive decisions of dose escalation and de‐escalation in a timely manner because of the fast accrual rate, the difference of outcome evaluation periods for efficacy and toxicity and the late‐onset outcomes. To solve these issues, we propose the time‐to‐event Bayesian optimal interval design to accelerate dose‐finding based on cumulative and pending data of both efficacy and toxicity. The new design, named “TITE‐BOIN‐ET” design, is nonparametric and a model‐assisted design. Thus, it is robust, much simpler, and easier to implement in actual oncology dose‐finding trials compared with the model‐based approaches. These characteristics are quite useful from a practical point of view. A simulation study shows that the TITE‐BOIN‐ET design has advantages compared with the model‐based approaches in both the percentage of correct OD selection and the average number of patients allocated to the ODs across a variety of realistic settings. In addition, the TITE‐BOIN‐ET design significantly shortens the trial duration compared with the designs without sequential enrollment and therefore has the potential to accelerate early stage dose‐finding trials.  相似文献   

5.
Immuno‐oncology has emerged as an exciting new approach to cancer treatment. Common immunotherapy approaches include cancer vaccine, effector cell therapy, and T‐cell–stimulating antibody. Checkpoint inhibitors such as cytotoxic T lymphocyte–associated antigen 4 and programmed death‐1/L1 antagonists have shown promising results in multiple indications in solid tumors and hematology. However, the mechanisms of action of these novel drugs pose unique statistical challenges in the accurate evaluation of clinical safety and efficacy, including late‐onset toxicity, dose optimization, evaluation of combination agents, pseudoprogression, and delayed and lasting clinical activity. Traditional statistical methods may not be the most accurate or efficient. It is highly desirable to develop the most suitable statistical methodologies and tools to efficiently investigate cancer immunotherapies. In this paper, we summarize these issues and discuss alternative methods to meet the challenges in the clinical development of these novel agents. For safety evaluation and dose‐finding trials, we recommend the use of a time‐to‐event model‐based design to handle late toxicities, a simple 3‐step procedure for dose optimization, and flexible rule‐based or model‐based designs for combination agents. For efficacy evaluation, we discuss alternative endpoints/designs/tests including the time‐specific probability endpoint, the restricted mean survival time, the generalized pairwise comparison method, the immune‐related response criteria, and the weighted log‐rank or weighted Kaplan‐Meier test. The benefits and limitations of these methods are discussed, and some recommendations are provided for applied researchers to implement these methods in clinical practice.  相似文献   

6.
Many phase I drug combination designs have been proposed to find the maximum tolerated combination (MTC). Due to the two‐dimension nature of drug combination trials, these designs typically require complicated statistical modeling and estimation, which limit their use in practice. In this article, we propose an easy‐to‐implement Bayesian phase I combination design, called Bayesian adaptive linearization method (BALM), to simplify the dose finding for drug combination trials. BALM takes the dimension reduction approach. It selects a subset of combinations, through a procedure called linearization, to convert the two‐dimensional dose matrix into a string of combinations that are fully ordered in toxicity. As a result, existing single‐agent dose‐finding methods can be directly used to find the MTC. In case that the selected linear path does not contain the MTC, a dose‐insertion procedure is performed to add new doses whose expected toxicity rate is equal to the target toxicity rate. Our simulation studies show that the proposed BALM design performs better than competing, more complicated combination designs.  相似文献   

7.
In this article, we consider the problem of seeking locally optimal designs for nonlinear dose‐response models with binary outcomes. Applying the theory of Tchebycheff Systems and other algebraic tools, we show that the locally D‐, A‐, and c‐optimal designs for three binary dose‐response models are minimally supported in finite, closed design intervals. The methods to obtain such designs are presented along with examples. The efficiencies of these designs are also discussed. The Canadian Journal of Statistics 46: 336–354; 2018 © 2018 Statistical Society of Canada  相似文献   

8.
Historically early phase oncology drug development programmes have been based on the belief that “more is better”. Furthermore, rule-based study designs such as the “3 + 3” design are still often used to identify the MTD. Phillips and Clark argue that newer Bayesian model-assisted designs such as the BOIN design should become the go to designs for statisticians for MTD finding. This short communication goes one stage further and argues that Bayesian model-assisted designs such as the BOIN12 which balances risk-benefit should be included as one of the go to designs for early phase oncology trials, depending on the study objectives. Identifying the optimal biological dose for future research for many modern targeted drugs, immunotherapies, cell therapies and vaccine therapies can save significant time and resources.  相似文献   

9.
In modern oncology drug development, adaptive designs have been proposed to identify the recommended phase 2 dose. The conventional dose finding designs focus on the identification of maximum tolerated dose (MTD). However, designs ignoring efficacy could put patients under risk by pushing to the MTD. Especially in immuno-oncology and cell therapy, the complex dose-toxicity and dose-efficacy relationships make such MTD driven designs more questionable. Additionally, it is not uncommon to have data available from other studies that target on similar mechanism of action and patient population. Due to the high variability from phase I trial, it is beneficial to borrow historical study information into the design when available. This will help to increase the model efficiency and accuracy and provide dose specific recommendation rules to avoid toxic dose level and increase the chance of patient allocation at potential efficacious dose levels. In this paper, we propose iBOIN-ET design that uses prior distribution extracted from historical studies to minimize the probability of decision error. The proposed design utilizes the concept of skeleton from both toxicity and efficacy data, coupled with prior effective sample size to control the amount of historical information to be incorporated. Extensive simulation studies across a variety of realistic settings are reported including a comparison of iBOIN-ET design to other model based and assisted approaches. The proposed novel design demonstrates the superior performances in percentage of selecting the correct optimal dose (OD), average number of patients allocated to the correct OD, and overdosing control during dose escalation process.  相似文献   

10.
Clinical phase II trials in oncology are conducted to determine whether the activity of a new anticancer treatment is promising enough to merit further investigation. Two‐stage designs are commonly used for this situation to allow for early termination. Designs proposed in the literature so far have the common drawback that the sample sizes for the two stages have to be specified in the protocol and have to be adhered to strictly during the course of the trial. As a consequence, designs that allow a higher extent of flexibility are desirable. In this article, we propose a new adaptive method that allows an arbitrary modification of the sample size of the second stage using the results of the interim analysis or external information while controlling the type I error rate. If the sample size is not changed during the trial, the proposed design shows very similar characteristics to the optimal two‐stage design proposed by Chang et al. (Biometrics 1987; 43:865–874). However, the new design allows the use of mid‐course information for the planning of the second stage, thus meeting practical requirements when performing clinical phase II trials in oncology. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
12.
This paper considers the maximin approach for designing clinical studies. A maximin efficient design maximizes the smallest efficiency when compared with a standard design, as the parameters vary in a specified subset of the parameter space. To specify this subset of parameters in a real situation, a four‐step procedure using elicitation based on expert opinions is proposed. Further, we describe why and how we extend the initially chosen subset of parameters to a much larger set in our procedure. By this procedure, the maximin approach becomes feasible for dose‐finding studies. Maximin efficient designs have shown to be numerically difficult to construct. However, a new algorithm, the H‐algorithm, considerably simplifies the construction of these designs. We exemplify the maximin efficient approach by considering a sigmoid Emax model describing a dose–response relationship and compare inferential precision with that obtained when using a uniform design. The design obtained is shown to be at least 15% more efficient than the uniform design. © 2014 The Authors. Pharmaceutical Statistics Published by John Wiley & Sons Ltd.  相似文献   

13.
In early phase dose‐finding cancer studies, the objective is to determine the maximum tolerated dose, defined as the highest dose with an acceptable dose‐limiting toxicity rate. Finding this dose for drug‐combination trials is complicated because of drug–drug interactions, and many trial designs have been proposed to address this issue. These designs rely on complicated statistical models that typically are not familiar to clinicians, and are rarely used in practice. The aim of this paper is to propose a Bayesian dose‐finding design for drug combination trials based on standard logistic regression. Under the proposed design, we continuously update the posterior estimates of the model parameters to make the decisions of dose assignment and early stopping. Simulation studies show that the proposed design is competitive and outperforms some existing designs. We also extend our design to handle delayed toxicities. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Model‐based phase I dose‐finding designs rely on a single model throughout the study for estimating the maximum tolerated dose (MTD). Thus, one major concern is about the choice of the most suitable model to be used. This is important because the dose allocation process and the MTD estimation depend on whether or not the model is reliable, or whether or not it gives a better fit to toxicity data. The aim of our work was to propose a method that would remove the need for a model choice prior to the trial onset and then allow it sequentially at each patient's inclusion. In this paper, we described model checking approach based on the posterior predictive check and model comparison approach based on the deviance information criterion, in order to identify a more reliable or better model during the course of a trial and to support clinical decision making. Further, we presented two model switching designs for a phase I cancer trial that were based on the aforementioned approaches, and performed a comparison between designs with or without model switching, through a simulation study. The results showed that the proposed designs had the advantage of decreasing certain risks, such as those of poor dose allocation and failure to find the MTD, which could occur if the model is misspecified. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
One of the main aims of early phase clinical trials is to identify a safe dose with an indication of therapeutic benefit to administer to subjects in further studies. Ideally therefore, dose‐limiting events (DLEs) and responses indicative of efficacy should be considered in the dose‐escalation procedure. Several methods have been suggested for incorporating both DLEs and efficacy responses in early phase dose‐escalation trials. In this paper, we describe and evaluate a Bayesian adaptive approach based on one binary response (occurrence of a DLE) and one continuous response (a measure of potential efficacy) per subject. A logistic regression and a linear log‐log relationship are used respectively to model the binary DLEs and the continuous efficacy responses. A gain function concerning both the DLEs and efficacy responses is used to determine the dose to administer to the next cohort of subjects. Stopping rules are proposed to enable efficient decision making. Simulation results shows that our approach performs better than taking account of DLE responses alone. To assess the robustness of the approach, scenarios where the efficacy responses of subjects are generated from an E max model, but modelled by the linear log–log model are also considered. This evaluation shows that the simpler log–log model leads to robust recommendations even under this model showing that it is a useful approximation to the difficulty in estimating E max model. Additionally, we find comparable performance to alternative approaches using efficacy and safety for dose‐finding. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
This paper studies the notion of coherence in interval‐based dose‐finding methods. An incoherent decision is either (a) a recommendation to escalate the dose following an observed dose‐limiting toxicity or (b) a recommendation to deescalate the dose following a non–dose‐limiting toxicity. In a simulated example, we illustrate that the Bayesian optimal interval method and the Keyboard method are not coherent. We generated dose‐limiting toxicity outcomes under an assumed set of true probabilities for a trial of n=36 patients in cohorts of size 1, and we counted the number of incoherent dosing decisions that were made throughout this simulated trial. Each of the methods studied resulted in 13/36 (36%) incoherent decisions in the simulated trial. Additionally, for two different target dose‐limiting toxicity rates, 20% and 30%, and a sample size of n=30 patients, we randomly generated 100 dose‐toxicity curves and tabulated the number of incoherent decisions made by each method in 1000 simulated trials under each curve. For each method studied, the probability of incurring at least one incoherent decision during the conduct of a single trial is greater than 75%. Coherency is an important principle in the conduct of dose‐finding trials. Interval‐based methods violate this principle for cohorts of size 1 and require additional modifications to overcome this shortcoming. Researchers need to take a closer look at the dose assignment behavior of interval‐based methods when using them to plan dose‐finding studies.  相似文献   

17.
CVX‐based numerical algorithms are widely and freely available for solving convex optimization problems but their applications to solve optimal design problems are limited. Using the CVX programs in MATLAB, we demonstrate their utility and flexibility over traditional algorithms in statistics for finding different types of optimal approximate designs under a convex criterion for nonlinear models. They are generally fast and easy to implement for any model and any convex optimality criterion. We derive theoretical properties of the algorithms and use them to generate new A‐, c‐, D‐ and E‐optimal designs for various nonlinear models, including multi‐stage and multi‐objective optimal designs. We report properties of the optimal designs and provide sample CVX program codes for some of our examples that users can amend to find tailored optimal designs for their problems. The Canadian Journal of Statistics 47: 374–391; 2019 © 2019 Statistical Society of Canada  相似文献   

18.
Pre‐clinical studies may be used to screen for synergistic combinations of drugs. The types of in vitro assays used for this purpose will depend upon the disease area of interest. In oncology, one frequently used study measures cell line viability: cells placed into wells on a plate are treated with doses of two compounds, and cell viability is assessed from an optical density measurement corrected for blank well values. These measurements are often transformed and analysed as cell survival relative to untreated wells. The monotherapies are assumed to follow the Hill equation with lower and upper asymptotes at 0 and 1, respectively. Additionally, a common variance about the dose–response curve may be assumed. In this paper, we consider two models for incorporating synergy parameters. We investigate the effect of different models of biological variation on the assessment of synergy from both of these models. We show that estimates of the synergy parameters appear to be robust, even when estimates of the other model parameters are biased. Using untransformed measurements provides better coverage of the 95% confidence intervals for the synergy parameters than using transformed measurements, and the requirement to fit the upper asymptote does not cause difficulties. Assuming homoscedastic variances appears to be robust. The added complexity of determining and fitting an appropriate heteroscedastic model does not seem to be justified. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
In the planning of randomized survival trials, the role of follow‐up time of trial participants introduces a level of complexity not encountered in non‐survival trials. Of the two commonly used survival designs, one design fixes the follow‐up time whereas the other allows it to vary. When the follow‐up time is fixed the number of events varies. Conversely, when the number of events is fixed, the follow‐up time varies. These two designs influence test statistics in ways that have not been fully explored resulting in a misunderstanding of the design–test statistic relationship. We use examples from the literature to strengthen the understanding of this relationship. Group sequential trials are briefly discussed. When the number of events is fixed, we demonstrate why a two‐sample risk difference test statistic reduces to a one‐sample test statistic which is nearly equal to the risk ratio test statistic. Some aspects of fixed event designs that need further consideration are also discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, we study the bioequivalence (BE) inference problem motivated by pharmacokinetic data that were collected using the serial sampling technique. In serial sampling designs, subjects are independently assigned to one of the two drugs; each subject can be sampled only once, and data are collected at K distinct timepoints from multiple subjects. We consider design and hypothesis testing for the parameter of interest: the area under the concentration–time curve (AUC). Decision rules in demonstrating BE were established using an equivalence test for either the ratio or logarithmic difference of two AUCs. The proposed t-test can deal with cases where two AUCs have unequal variances. To control for the type I error rate, the involved degrees-of-freedom were adjusted using Satterthwaite's approximation. A power formula was derived to allow the determination of necessary sample sizes. Simulation results show that, when the two AUCs have unequal variances, the type I error rate is better controlled by the proposed method compared with a method that only handles equal variances. We also propose an unequal subject allocation method that improves the power relative to that of the equal and symmetric allocation. The methods are illustrated using practical examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号