首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The authors study the empirical likelihood method for linear regression models. They show that when missing responses are imputed using least squares predictors, the empirical log‐likelihood ratio is asymptotically a weighted sum of chi‐square variables with unknown weights. They obtain an adjusted empirical log‐likelihood ratio which is asymptotically standard chi‐square and hence can be used to construct confidence regions. They also obtain a bootstrap empirical log‐likelihood ratio and use its distribution to approximate that of the empirical log‐likelihood ratio. A simulation study indicates that the proposed methods are comparable in terms of coverage probabilities and average lengths of confidence intervals, and perform better than a normal approximation based method.  相似文献   

2.
The authors develop empirical likelihood (EL) based methods of inference for a common mean using data from several independent but nonhomogeneous populations. For point estimation, they propose a maximum empirical likelihood (MEL) estimator and show that it is n‐consistent and asymptotically optimal. For confidence intervals, they consider two EL based methods and show that both intervals have approximately correct coverage probabilities under large samples. Finite‐sample performances of the MEL estimator and the EL based confidence intervals are evaluated through a simulation study. The results indicate that overall the MEL estimator and the weighted EL confidence interval are superior alternatives to the existing methods.  相似文献   

3.
Empirical likelihood for generalized linear models with missing responses   总被引:1,自引:0,他引:1  
The paper uses the empirical likelihood method to study the construction of confidence intervals and regions for regression coefficients and response mean in generalized linear models with missing response. By using the inverse selection probability weighted imputation technique, the proposed empirical likelihood ratios are asymptotically chi-squared. Our approach is to directly calibrate the empirical likelihood ratio, which is called as a bias-correction method. Also, a class of estimators for the parameters of interest is constructed, and the asymptotic distributions of the proposed estimators are obtained. A simulation study indicates that the proposed methods are comparable in terms of coverage probabilities and average lengths/areas of confidence intervals/regions. An example of a real data set is used for illustrating our methods.  相似文献   

4.
In this paper, we consider the empirical likelihood inferences of the partial functional linear model with missing responses. Two empirical log-likelihood ratios of the parameters of interest are constructed, and the corresponding maximum empirical likelihood estimators of parameters are derived. Under some regularity conditions, we show that the proposed two empirical log-likelihood ratios are asymptotic standard Chi-squared. Thus, the asymptotic results can be used to construct the confidence intervals/regions for the parameters of interest. We also establish the asymptotic distribution theory of corresponding maximum empirical likelihood estimators. A simulation study indicates that the proposed methods are comparable in terms of coverage probabilities and average lengths of confidence intervals. An example of real data is also used to illustrate our proposed methods.  相似文献   

5.
In this article bootstrap confidence intervals of process capability index as suggested by Chen and Pearn [An application of non-normal process capability indices. Qual Reliab Eng Int. 1997;13:355–360] are studied through simulation when the underlying distributions are inverse Rayleigh and log-logistic distributions. The well-known maximum likelihood estimator is used to estimate the parameter. The bootstrap confidence intervals considered in this paper consists of various confidence intervals. A Monte Carlo simulation has been used to investigate the estimated coverage probabilities and average widths of the bootstrap confidence intervals. Application examples on two distributions for process capability indices are provided for practical use.  相似文献   

6.
One of the indicators for evaluating the capability of a process is the process capability index. In this article, bootstrap confidence intervals of the generalized process capability index (GPCI) proposed by Maiti et al. are studied through simulation, when the underlying distributions are Lindley and Power Lindley distributions. The maximum likelihood method is used to estimate the parameters of the models. Three bootstrap confidence intervals namely, standard bootstrap (SB), percentile bootstrap (PB), and bias-corrected percentile bootstrap (BCPB) are considered for obtaining confidence intervals of GPCI. A Monte Carlo simulation has been used to investigate the estimated coverage probabilities and average width of the bootstrap confidence intervals. Simulation results show that the estimated coverage probabilities of the percentile bootstrap confidence interval and the bias-corrected percentile bootstrap confidence interval get closer to the nominal confidence level than those of the standard bootstrap confidence interval. Finally, three real datasets are analyzed for illustrative purposes.  相似文献   

7.
In this paper, we consider the simple step-stress model for a two-parameter exponential distribution, when both the parameters are unknown and the data are Type-II censored. It is assumed that under two different stress levels, the scale parameter only changes but the location parameter remains unchanged. It is observed that the maximum likelihood estimators do not always exist. We obtain the maximum likelihood estimates of the unknown parameters whenever they exist. We provide the exact conditional distributions of the maximum likelihood estimators of the scale parameters. Since the construction of the exact confidence intervals is very difficult from the conditional distributions, we propose to use the observed Fisher Information matrix for this purpose. We have suggested to use the bootstrap method for constructing confidence intervals. Bayes estimates and associated credible intervals are obtained using the importance sampling technique. Extensive simulations are performed to compare the performances of the different confidence and credible intervals in terms of their coverage percentages and average lengths. The performances of the bootstrap confidence intervals are quite satisfactory even for small sample sizes.  相似文献   

8.
In this article, the generalized linear model for longitudinal data is studied. A generalized empirical likelihood method is proposed by combining generalized estimating equations and quadratic inference functions based on the working correlation matrix. It is proved that the proposed generalized empirical likelihood ratios are asymptotically chi-squared under some suitable conditions, and hence it can be used to construct the confidence regions of the parameters. In addition, the maximum empirical likelihood estimates of parameters are obtained, and their asymptotic normalities are proved. Some simulations are undertaken to compare the generalized empirical likelihood and normal approximation-based method in terms of coverage accuracies and average areas/lengths of confidence regions/intervals. An example of a real data is used for illustrating our methods.  相似文献   

9.
We propose a weighted empirical likelihood approach to inference with multiple samples, including stratified sampling, the estimation of a common mean using several independent and non-homogeneous samples and inference on a particular population using other related samples. The weighting scheme and the basic result are motivated and established under stratified sampling. We show that the proposed method can ideally be applied to the common mean problem and problems with related samples. The proposed weighted approach not only provides a unified framework for inference with multiple samples, including two-sample problems, but also facilitates asymptotic derivations and computational methods. A bootstrap procedure is also proposed in conjunction with the weighted approach to provide better coverage probabilities for the weighted empirical likelihood ratio confidence intervals. Simulation studies show that the weighted empirical likelihood confidence intervals perform better than existing ones.  相似文献   

10.
Comparison of accuracy between two diagnostic tests can be implemented by investigating the difference in paired Youden indices. However, few literature articles have discussed the inferences for the difference in paired Youden indices. In this paper, we propose an exact confidence interval for the difference in paired Youden indices based on the generalized pivotal quantities. For comparison, the maximum likelihood estimate‐based interval and a bootstrap‐based interval are also included in the study for the difference in paired Youden indices. Abundant simulation studies are conducted to compare the relative performance of these intervals by evaluating the coverage probability and average interval length. Our simulation results demonstrate that the exact confidence interval outperforms the other two intervals even with small sample size when the underlying distributions are normal. A real application is also used to illustrate the proposed intervals. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
ABSTRACT

The performances of six confidence intervals for estimating the arithmetic mean of a lognormal distribution are compared using simulated data. The first interval considered is based on an exact method and is recommended in U.S. EPA guidance documents for calculating upper confidence limits for contamination data. Two intervals are based on asymptotic properties due to the Central Limit Theorem, and the other three are based on transformations and maximum likelihood estimation. The effects of departures from lognormality on the performance of these intervals are also investigated. The gamma distribution is considered to represent departures from the lognormal distribution. The average width and coverage of each confidence interval is reported for varying mean, variance, and sample size. In the lognormal case, the exact interval gives good coverage, but for small sample sizes and large variances the confidence intervals are too wide. In these cases, an approximation that incorporates sampling variability of the sample variance tends to perform better. When the underlying distribution is a gamma distribution, the intervals based upon the Central Limit Theorem tend to perform better than those based upon lognormal assumptions.  相似文献   

12.
This article introduces adaptive weighted maximum likelihood estimators for binary regression models. The asymptotic distribution under the model is established, and asymptotic confidence intervals are derived. Finite-sample properties are studied by simulation. For clean datasets, the proposed adaptive estimators are more efficient than the non-adaptive ones even for moderate sample sizes, and for outlier-contaminated datasets they show a comparable robustness. As for the asymptotic confidence intervals, the actual coverage levels under the model are very close to the nominal levels (even for moderate sample sizes), and they are reasonably stable under contamination.  相似文献   

13.
This paper examines the use of bootstrapping for bias correction and calculation of confidence intervals (CIs) for a weighted nonlinear quantile regression estimator adjusted to the case of longitudinal data. Different weights and types of CIs are used and compared by computer simulation using a logistic growth function and error terms following an AR(1) model. The results indicate that bias correction reduces the bias of a point estimator but fails for CI calculations. A bootstrap percentile method and a normal approximation method perform well for two weights when used without bias correction. Taking both coverage and lengths of CIs into consideration, a non-bias-corrected percentile method with an unweighted estimator performs best.  相似文献   

14.
We respond to criticism leveled at bootstrap confidence intervals for the correlation coefficient by recent authors by arguing that in the correlation coefficient case, non–standard methods should be employed. We propose two such methods. The first is a bootstrap coverage coorection algorithm using iterated bootstrap techniques (Hall, 1986; Beran, 1987a; Hall and Martin, 1988) applied to ordinary percentile–method intervals (Efron, 1979), giving intervals with high coverage accuracy and stable lengths and endpoints. The simulation study carried out for this method gives results for sample sizes 8, 10, and 12 in three parent populations. The second technique involves the construction of percentile–t bootstrap confidence intervals for a transformed correlation coefficient, followed by an inversion of the transformation, to obtain “transformed percentile–t” intervals for the correlation coefficient. In particular, Fisher's z–transformation is used, and nonparametric delta method and jackknife variance estimates are used to Studentize the transformed correlation coefficient, with the jackknife–Studentized transformed percentile–t interval yielding the better coverage accuracy, in general. Percentile–t intervals constructed without first using the transformation perform very poorly, having large expected lengths and erratically fluctuating endpoints. The simulation study illustrating this technique gives results for sample sizes 10, 15 and 20 in four parent populations. Our techniques provide confidence intervals for the correlation coefficient which have good coverage accuracy (unlike ordinary percentile intervals), and stable lengths and endpoints (unlike ordinary percentile–t intervals).  相似文献   

15.
For studies with dichotomous outcomes, inverse sampling (also known as negative binomial sampling) is often used when the subjects arrive sequentially, when the underlying response of interest is acute, and/or when the maximum likelihood estimators of some epidemiologic indices are undefined. Although exact unconditional inference has been shown to be appealing, its applicability and popularity is severely hindered by the notorious conservativeness due to the adoption of the maximization principle and by the tedious computing time due to the involvement of infinite summation. In this article, we demonstrate how these obstacles can be overcome by the application of the constrained maximum likelihood estimation and truncated approximation. The present work is motivated by confidence interval construction for the risk difference under inverse sampling. Wald-type and score-type confidence intervals based on inverting two one-sided and one two-sided tests are considered. Monte Carlo simulations are conducted to evaluate the performance of these confidence intervals with respect to empirical coverage probability, empirical confidence width, and empirical left and right non-coverage probabilities. Two examples from a maternal congenital heart disease study and a drug comparison study are used to demonstrate the proposed methodologies.  相似文献   

16.
This paper is concerned with statistical inference for partially nonlinear models. Empirical likelihood method for parameter in nonlinear function and nonparametric function is investigated. The empirical log-likelihood ratios are shown to be asymptotically chi-square and then the corresponding confidence intervals are constructed. By the empirical likelihood ratio functions, we also obtain the maximum empirical likelihood estimators of the parameter in nonlinear function and nonparametric function, and prove the asymptotic normality. A simulation study indicates that, compared with normal approximation-based method and the bootstrap method, the empirical likelihood method performs better in terms of coverage probabilities and average length/widths of confidence intervals/bands. An application to a real dataset is illustrated.  相似文献   

17.
We discuss a new way of constructing pointwise confidence intervals for the distribution function in the current status model. The confidence intervals are based on the smoothed maximum likelihood estimator, using local smooth functional theory and normal limit distributions. Bootstrap methods for constructing these intervals are considered. Other methods to construct confidence intervals, using the non‐standard limit distribution of the (restricted) maximum likelihood estimator, are compared with our approach via simulations and real data applications.  相似文献   

18.
We develop an approach to evaluating frequentist model averaging procedures by considering them in a simple situation in which there are two‐nested linear regression models over which we average. We introduce a general class of model averaged confidence intervals, obtain exact expressions for the coverage and the scaled expected length of the intervals, and use these to compute these quantities for the model averaged profile likelihood (MPI) and model‐averaged tail area confidence intervals proposed by D. Fletcher and D. Turek. We show that the MPI confidence intervals can perform more poorly than the standard confidence interval used after model selection but ignoring the model selection process. The model‐averaged tail area confidence intervals perform better than the MPI and postmodel‐selection confidence intervals but, for the examples that we consider, offer little over simply using the standard confidence interval for θ under the full model, with the same nominal coverage.  相似文献   

19.
We develop new exact confidence intervals for a proportion using ranked-set sampling (RSS). The existing intervals arise from applying the method of Clopper and Pearson (1934) to the total number of successes. We improve on the existing intervals by using the method of Blaker (2000) and by replacing the total number of successes with the maximum likelihood estimator of the proportion. The new intervals outperform the existing intervals in terms of average expected length, and they are also good in an absolute sense, as they come within a few percentage points of a new theoretical bound on the average expected length. Like the existing intervals, the new intervals use a perfect rankings assumption. They are no longer exact under imperfect rankings, but provide coverage close to nominal for mild departures from perfect rankings.  相似文献   

20.
The main objective of this work is to evaluate the performance of confidence intervals, built using the deviance statistic, for the hyperparameters of state space models. The first procedure is a marginal approximation to confidence regions, based on the likelihood test, and the second one is based on the signed root deviance profile. Those methods are computationally efficient and are not affected by problems such as intervals with limits outside the parameter space, which can be the case when the focus is on the variances of the errors. The procedures are compared to the usual approaches existing in the literature, which includes the method based on the asymptotic distribution of the maximum likelihood estimator, as well as bootstrap confidence intervals. The comparison is performed via a Monte Carlo study, in order to establish empirically the advantages and disadvantages of each method. The results show that the methods based on the deviance statistic possess a better coverage rate than the asymptotic and bootstrap procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号