首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Over the past years, significant progress has been made in developing statistically rigorous methods to implement clinically interpretable sensitivity analyses for assumptions about the missingness mechanism in clinical trials for continuous and (to a lesser extent) for binary or categorical endpoints. Studies with time‐to‐event outcomes have received much less attention. However, such studies can be similarly challenged with respect to the robustness and integrity of primary analysis conclusions when a substantial number of subjects withdraw from treatment prematurely prior to experiencing an event of interest. We discuss how the methods that are widely used for primary analyses of time‐to‐event outcomes could be extended in a clinically meaningful and interpretable way to stress‐test the assumption of ignorable censoring. We focus on a ‘tipping point’ approach, the objective of which is to postulate sensitivity parameters with a clear clinical interpretation and to identify a setting of these parameters unfavorable enough towards the experimental treatment to nullify a conclusion that was favorable to that treatment. Robustness of primary analysis results can then be assessed based on clinical plausibility of the scenario represented by the tipping point. We study several approaches for conducting such analyses based on multiple imputation using parametric, semi‐parametric, and non‐parametric imputation models and evaluate their operating characteristics via simulation. We argue that these methods are valuable tools for sensitivity analyses of time‐to‐event data and conclude that the method based on piecewise exponential imputation model of survival has some advantages over other methods studied here. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Recently, molecularly targeted agents and immunotherapy have been advanced for the treatment of relapse or refractory cancer patients, where disease progression‐free survival or event‐free survival is often a primary endpoint for the trial design. However, methods to evaluate two‐stage single‐arm phase II trials with a time‐to‐event endpoint are currently processed under an exponential distribution, which limits application of real trial designs. In this paper, we developed an optimal two‐stage design, which is applied to the four commonly used parametric survival distributions. The proposed method has advantages compared with existing methods in that the choice of underlying survival model is more flexible and the power of the study is more adequately addressed. Therefore, the proposed two‐stage design can be routinely used for single‐arm phase II trial designs with a time‐to‐event endpoint as a complement to the commonly used Simon's two‐stage design for the binary outcome.  相似文献   

3.
Clinical trials of experimental treatments must be designed with primary endpoints that directly measure clinical benefit for patients. In many disease areas, the recognised gold standard primary endpoint can take many years to mature, leading to challenges in the conduct and quality of clinical studies. There is increasing interest in using shorter‐term surrogate endpoints as substitutes for costly long‐term clinical trial endpoints; such surrogates need to be selected according to biological plausibility, as well as the ability to reliably predict the unobserved treatment effect on the long‐term endpoint. A number of statistical methods to evaluate this prediction have been proposed; this paper uses a simulation study to explore one such method in the context of time‐to‐event surrogates for a time‐to‐event true endpoint. This two‐stage meta‐analytic copula method has been extensively studied for time‐to‐event surrogate endpoints with one event of interest, but thus far has not been explored for the assessment of surrogates which have multiple events of interest, such as those incorporating information directly from the true clinical endpoint. We assess the sensitivity of the method to various factors including strength of association between endpoints, the quantity of data available, and the effect of censoring. In particular, we consider scenarios where there exist very little data on which to assess surrogacy. Results show that the two‐stage meta‐analytic copula method performs well under certain circumstances and could be considered useful in practice, but demonstrates limitations that may prevent universal use.  相似文献   

4.
Clinical trials involving multiple time‐to‐event outcomes are increasingly common. In this paper, permutation tests for testing for group differences in multivariate time‐to‐event data are proposed. Unlike other two‐sample tests for multivariate survival data, the proposed tests attain the nominal type I error rate. A simulation study shows that the proposed tests outperform their competitors when the degree of censored observations is sufficiently high. When the degree of censoring is low, it is seen that naive tests such as Hotelling's T2 outperform tests tailored to survival data. Computational and practical aspects of the proposed tests are discussed, and their use is illustrated by analyses of three publicly available datasets. Implementations of the proposed tests are available in an accompanying R package.  相似文献   

5.
A draft addendum to ICH E9 has been released for public consultation in August 2017. The addendum focuses on two topics particularly relevant for randomized confirmatory clinical trials: estimands and sensitivity analyses. The need to amend ICH E9 grew out of the realization of a lack of alignment between the objectives of a clinical trial stated in the protocol and the accompanying quantification of the “treatment effect” reported in a regulatory submission. We embed time‐to‐event endpoints in the estimand framework and discuss how the four estimand attributes described in the addendum apply to time‐to‐event endpoints. We point out that if the proportional hazards assumption is not met, the estimand targeted by the most prevalent methods used to analyze time‐to‐event endpoints, logrank test, and Cox regression depends on the censoring distribution. We discuss for a large randomized clinical trial how the analyses for the primary and secondary endpoints as well as the sensitivity analyses actually performed in the trial can be seen in the context of the addendum. To the best of our knowledge, this is the first attempt to do so for a trial with a time‐to‐event endpoint. Questions that remain open with the addendum for time‐to‐event endpoints and beyond are formulated, and recommendations for planning of future trials are given. We hope that this will provide a contribution to developing a common framework based on the final version of the addendum that can be applied to design, protocols, statistical analysis plans, and clinical study reports in the future.  相似文献   

6.
One of the primary purposes of an oncology dose‐finding trial is to identify an optimal dose (OD) that is both tolerable and has an indication of therapeutic benefit for subjects in subsequent clinical trials. In addition, it is quite important to accelerate early stage trials to shorten the entire period of drug development. However, it is often challenging to make adaptive decisions of dose escalation and de‐escalation in a timely manner because of the fast accrual rate, the difference of outcome evaluation periods for efficacy and toxicity and the late‐onset outcomes. To solve these issues, we propose the time‐to‐event Bayesian optimal interval design to accelerate dose‐finding based on cumulative and pending data of both efficacy and toxicity. The new design, named “TITE‐BOIN‐ET” design, is nonparametric and a model‐assisted design. Thus, it is robust, much simpler, and easier to implement in actual oncology dose‐finding trials compared with the model‐based approaches. These characteristics are quite useful from a practical point of view. A simulation study shows that the TITE‐BOIN‐ET design has advantages compared with the model‐based approaches in both the percentage of correct OD selection and the average number of patients allocated to the ODs across a variety of realistic settings. In addition, the TITE‐BOIN‐ET design significantly shortens the trial duration compared with the designs without sequential enrollment and therefore has the potential to accelerate early stage dose‐finding trials.  相似文献   

7.
For clinical trials with time‐to‐event endpoints, predicting the accrual of the events of interest with precision is critical in determining the timing of interim and final analyses. For example, overall survival (OS) is often chosen as the primary efficacy endpoint in oncology studies, with planned interim and final analyses at a pre‐specified number of deaths. Often, correlated surrogate information, such as time‐to‐progression (TTP) and progression‐free survival, are also collected as secondary efficacy endpoints. It would be appealing to borrow strength from the surrogate information to improve the precision of the analysis time prediction. Currently available methods in the literature for predicting analysis timings do not consider utilizing the surrogate information. In this article, using OS and TTP as an example, a general parametric model for OS and TTP is proposed, with the assumption that disease progression could change the course of the overall survival. Progression‐free survival, related both to OS and TTP, will be handled separately, as it can be derived from OS and TTP. The authors seek to develop a prediction procedure using a Bayesian method and provide detailed implementation strategies under certain assumptions. Simulations are performed to evaluate the performance of the proposed method. An application to a real study is also provided. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
In randomized clinical trials with time‐to‐event outcomes, the hazard ratio is commonly used to quantify the treatment effect relative to a control. The Cox regression model is commonly used to adjust for relevant covariates to obtain more accurate estimates of the hazard ratio between treatment groups. However, it is well known that the treatment hazard ratio based on a covariate‐adjusted Cox regression model is conditional on the specific covariates and differs from the unconditional hazard ratio that is an average across the population. Therefore, covariate‐adjusted Cox models cannot be used when the unconditional inference is desired. In addition, the covariate‐adjusted Cox model requires the relatively strong assumption of proportional hazards for each covariate. To overcome these challenges, a nonparametric randomization‐based analysis of covariance method was proposed to estimate the covariate‐adjusted hazard ratios for multivariate time‐to‐event outcomes. However, empirical evaluations of the performance (power and type I error rate) of the method have not been studied. Although the method is derived for multivariate situations, for most registration trials, the primary endpoint is a univariate outcome. Therefore, this approach is applied to univariate outcomes, and performance is evaluated through a simulation study in this paper. Stratified analysis is also investigated. As an illustration of the method, we also apply the covariate‐adjusted and unadjusted analyses to an oncology trial. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
In the traditional study design of a single‐arm phase II cancer clinical trial, the one‐sample log‐rank test has been frequently used. A common practice in sample size calculation is to assume that the event time in the new treatment follows exponential distribution. Such a study design may not be suitable for immunotherapy cancer trials, when both long‐term survivors (or even cured patients from the disease) and delayed treatment effect are present, because exponential distribution is not appropriate to describe such data and consequently could lead to severely underpowered trial. In this research, we proposed a piecewise proportional hazards cure rate model with random delayed treatment effect to design single‐arm phase II immunotherapy cancer trials. To improve test power, we proposed a new weighted one‐sample log‐rank test and provided a sample size calculation formula for designing trials. Our simulation study showed that the proposed log‐rank test performs well and is robust of misspecified weight and the sample size calculation formula also performs well.  相似文献   

10.
For clinical trials with time‐to‐event as the primary endpoint, the clinical cutoff is often event‐driven and the log‐rank test is the most commonly used statistical method for evaluating treatment effect. However, this method relies on the proportional hazards assumption in that it has the maximal power in this circumstance. In certain disease areas or populations, some patients can be curable and never experience the events despite a long follow‐up. The event accumulation may dry out after a certain period of follow‐up and the treatment effect could be reflected as the combination of improvement of cure rate and the delay of events for those uncurable patients. Study power depends on both cure rate improvement and hazard reduction. In this paper, we illustrate these practical issues using simulation studies and explore sample size recommendations, alternative ways for clinical cutoffs, and efficient testing methods with the highest study power possible.  相似文献   

11.
The win ratio has been studied methodologically and applied in data analysis and in designing clinical trials. Researchers have pointed out that the results depend on follow‐up time and censoring time, which are sometimes used interchangeably. In this article, we distinguish between follow‐up time and censoring time, show theoretically the impact of censoring on the win ratio, and illustrate the impact of follow‐up time. We then point out that, if the treatment has long‐term benefit from a more important but less frequent endpoint (eg, death), the win ratio can show that benefit by following patients longer, avoiding masking by more frequent but less important outcomes, which occurs in conventional time‐to‐first‐event analyses. For the situation of nonproportional hazards, we demonstrate that the win ratio can be a good alternative to methods such as landmark survival rate, restricted mean survival time, and weighted log‐rank tests.  相似文献   

12.
In the past, many clinical trials have withdrawn subjects from the study when they prematurely stopped their randomised treatment and have therefore only collected ‘on‐treatment’ data. Thus, analyses addressing a treatment policy estimand have been restricted to imputing missing data under assumptions drawn from these data only. Many confirmatory trials are now continuing to collect data from subjects in a study even after they have prematurely discontinued study treatment as this event is irrelevant for the purposes of a treatment policy estimand. However, despite efforts to keep subjects in a trial, some will still choose to withdraw. Recent publications for sensitivity analyses of recurrent event data have focused on the reference‐based imputation methods commonly applied to continuous outcomes, where imputation for the missing data for one treatment arm is based on the observed outcomes in another arm. However, the existence of data from subjects who have prematurely discontinued treatment but remained in the study has now raised the opportunity to use this ‘off‐treatment’ data to impute the missing data for subjects who withdraw, potentially allowing more plausible assumptions for the missing post‐study‐withdrawal data than reference‐based approaches. In this paper, we introduce a new imputation method for recurrent event data in which the missing post‐study‐withdrawal event rate for a particular subject is assumed to reflect that observed from subjects during the off‐treatment period. The method is illustrated in a trial in chronic obstructive pulmonary disease (COPD) where the primary endpoint was the rate of exacerbations, analysed using a negative binomial model.  相似文献   

13.
In recent years, many vaccines have been developed for the prevention of a variety of diseases. Although the primary objective of vaccination is to prevent disease, vaccination can also reduce the severity of disease in those individuals who develop breakthrough disease. Observations of apparent mitigation of breakthrough disease in vaccine recipients have been reported for a number of vaccine‐preventable diseases such as Herpes Zoster, Influenza, Rotavirus, and Pertussis. The burden‐of‐illness (BOI) score was developed to incorporate the incidence of disease as well as the severity and duration of disease. A severity‐of‐illness score S > 0 is assigned to individuals who develop disease and a score of 0 is assigned to uninfected individuals. In this article, we derive the vaccine efficacy statistic (which is the standard statistic for presenting efficacy outcomes in vaccine clinical trials) based on BOI scores, and we extend the method to adjust for baseline covariates. Also, we illustrate it with data from a clinical trial in which the efficacy of a Herpes Zoster vaccine was evaluated.  相似文献   

14.
Intention‐to‐treat (ITT) analysis is widely used to establish efficacy in randomized clinical trials. However, in a long‐term outcomes study where non‐adherence to study drug is substantial, the on‐treatment effect of the study drug may be underestimated using the ITT analysis. The analyses presented herein are from the EVOLVE trial, a double‐blind, placebo‐controlled, event‐driven cardiovascular outcomes study conducted to assess whether a treatment regimen including cinacalcet compared with placebo in addition to other conventional therapies reduces the risk of mortality and major cardiovascular events in patients receiving hemodialysis with secondary hyperparathyroidism. Pre‐specified sensitivity analyses were performed to assess the impact of non‐adherence on the estimated effect of cinacalcet. These analyses included lag‐censoring, inverse probability of censoring weights (IPCW), rank preserving structural failure time model (RPSFTM) and iterative parameter estimation (IPE). The relative hazard (cinacalcet versus placebo) of mortality and major cardiovascular events was 0.93 (95% confidence interval 0.85, 1.02) using the ITT analysis; 0.85 (0.76, 0.95) using lag‐censoring analysis; 0.81 (0.70, 0.92) using IPCW; 0.85 (0.66, 1.04) using RPSFTM and 0.85 (0.75, 0.96) using IPE. These analyses, while not providing definitive evidence, suggest that the intervention may have an effect while subjects are receiving treatment. The ITT method remains the established method to evaluate efficacy of a new treatment; however, additional analyses should be considered to assess the on‐treatment effect when substantial non‐adherence to study drug is expected or observed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
For first‐time‐in‐human studies with small molecules alternating cross‐over designs are often employed and at study end are analyzed using linear models. We discuss the impact of including a period effect in the model on the precision with which dose level contrasts can be estimated and quantify the bias of least squares estimators if a period effect is inherent in the data that is not accounted for in the model. We also propose two alternative designs that allow a more precise estimation of dose level contrasts compared with the standard design when period effects are included in the model. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
In some exceptional circumstances, as in very rare diseases, nonrandomized one‐arm trials are the sole source of evidence to demonstrate efficacy and safety of a new treatment. The design of such studies needs a sound methodological approach in order to provide reliable information, and the determination of the appropriate sample size still represents a critical step of this planning process. As, to our knowledge, no method exists for sample size calculation in one‐arm trials with a recurrent event endpoint, we propose here a closed sample size formula. It is derived assuming a mixed Poisson process, and it is based on the asymptotic distribution of the one‐sample robust nonparametric test recently developed for the analysis of recurrent events data. The validity of this formula in managing a situation with heterogeneity of event rates, both in time and between patients, and time‐varying treatment effect was demonstrated with exhaustive simulation studies. Moreover, although the method requires the specification of a process for events generation, it seems to be robust under erroneous definition of this process, provided that the number of events at the end of the study is similar to the one assumed in the planning phase. The motivating clinical context is represented by a nonrandomized one‐arm study on gene therapy in a very rare immunodeficiency in children (ADA‐SCID), where a major endpoint is the recurrence of severe infections. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Multivariate longitudinal or clustered data are commonly encountered in clinical trials and toxicological studies. Typically, there is no single standard endpoint to assess the toxicity or efficacy of the compound of interest, but co‐primary endpoints are available to assess the toxic effects or the working of the compound. Modeling the responses jointly is thus appealing to draw overall inferences using all responses and to capture the association among the responses. Non‐Gaussian outcomes are often modeled univariately using exponential family models. To accommodate both the overdispersion and hierarchical structure in the data, Molenberghs et al. A family of generalized linear models for repeated measures with normal and conjugate random effects. Statistical Science 2010; 25:325–347 proposed using two separate sets of random effects. This papers considers a model for multivariate data with hierarchically clustered and overdispersed non‐Gaussian data. Gamma random effect for the over‐dispersion and normal random effects for the clustering in the data are being used. The two outcomes are jointly analyzed by assuming that the normal random effects for both endpoints are correlated. The association structure between the response is analytically derived. The fit of the joint model to data from a so‐called comet assay are compared with the univariate analysis of the two outcomes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
In parallel group trials, long‐term efficacy endpoints may be affected if some patients switch or cross over to the alternative treatment arm prior to the event. In oncology trials, switch to the experimental treatment can occur in the control arm following disease progression and potentially impact overall survival. It may be a clinically relevant question to estimate the efficacy that would have been observed if no patients had switched, for example, to estimate ‘real‐life’ clinical effectiveness for a health technology assessment. Several commonly used statistical methods are available that try to adjust time‐to‐event data to account for treatment switching, ranging from naive exclusion and censoring approaches to more complex inverse probability of censoring weighting and rank‐preserving structural failure time models. These are described, along with their key assumptions, strengths, and limitations. Best practice guidance is provided for both trial design and analysis when switching is anticipated. Available statistical software is summarized, and examples are provided of the application of these methods in health technology assessments of oncology trials. Key considerations include having a clearly articulated rationale and research question and a well‐designed trial with sufficient good quality data collection to enable robust statistical analysis. No analysis method is universally suitable in all situations, and each makes strong untestable assumptions. There is a need for further research into new or improved techniques. This information should aid statisticians and their colleagues to improve the design and analysis of clinical trials where treatment switch is anticipated. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
In the analysis of semi‐competing risks data interest lies in estimation and inference with respect to a so‐called non‐terminal event, the observation of which is subject to a terminal event. Multi‐state models are commonly used to analyse such data, with covariate effects on the transition/intensity functions typically specified via the Cox model and dependence between the non‐terminal and terminal events specified, in part, by a unit‐specific shared frailty term. To ensure identifiability, the frailties are typically assumed to arise from a parametric distribution, specifically a Gamma distribution with mean 1.0 and variance, say, σ2. When the frailty distribution is misspecified, however, the resulting estimator is not guaranteed to be consistent, with the extent of asymptotic bias depending on the discrepancy between the assumed and true frailty distributions. In this paper, we propose a novel class of transformation models for semi‐competing risks analysis that permit the non‐parametric specification of the frailty distribution. To ensure identifiability, the class restricts to parametric specifications of the transformation and the error distribution; the latter are flexible, however, and cover a broad range of possible specifications. We also derive the semi‐parametric efficient score under the complete data setting and propose a non‐parametric score imputation method to handle right censoring; consistency and asymptotic normality of the resulting estimators is derived and small‐sample operating characteristics evaluated via simulation. Although the proposed semi‐parametric transformation model and non‐parametric score imputation method are motivated by the analysis of semi‐competing risks data, they are broadly applicable to any analysis of multivariate time‐to‐event outcomes in which a unit‐specific shared frailty is used to account for correlation. Finally, the proposed model and estimation procedures are applied to a study of hospital readmission among patients diagnosed with pancreatic cancer.  相似文献   

20.
The stratified Cox model is commonly used for stratified clinical trials with time‐to‐event endpoints. The estimated log hazard ratio is approximately a weighted average of corresponding stratum‐specific Cox model estimates using inverse‐variance weights; the latter are optimal only under the (often implausible) assumption of a constant hazard ratio across strata. Focusing on trials with limited sample sizes (50‐200 subjects per treatment), we propose an alternative approach in which stratum‐specific estimates are obtained using a refined generalized logrank (RGLR) approach and then combined using either sample size or minimum risk weights for overall inference. Our proposal extends the work of Mehrotra et al, to incorporate the RGLR statistic, which outperforms the Cox model in the setting of proportional hazards and small samples. This work also entails development of a remarkably accurate plug‐in formula for the variance of RGLR‐based estimated log hazard ratios. We demonstrate using simulations that our proposed two‐step RGLR analysis delivers notably better results through smaller estimation bias and mean squared error and larger power than the stratified Cox model analysis when there is a treatment‐by‐stratum interaction, with similar performance when there is no interaction. Additionally, our method controls the type I error rate while the stratified Cox model does not in small samples. We illustrate our method using data from a clinical trial comparing two treatments for colon cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号