首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The article studies non‐Gaussian extensions of a recently discovered link between certain Gaussian random fields, expressed as solutions to stochastic partial differential equations (SPDEs), and Gaussian Markov random fields. The focus is on non‐Gaussian random fields with Matérn covariance functions, and in particular, we show how the SPDE formulation of a Laplace moving‐average model can be used to obtain an efficient simulation method as well as an accurate parameter estimation technique for the model. This should be seen as a demonstration of how these techniques can be used, and generalizations to more general SPDEs are readily available.  相似文献   

2.
This work provides a class of non‐Gaussian spatial Matérn fields which are useful for analysing geostatistical data. The models are constructed as solutions to stochastic partial differential equations driven by generalized hyperbolic noise and are incorporated in a standard geostatistical setting with irregularly spaced observations, measurement errors and covariates. A maximum likelihood estimation technique based on the Monte Carlo expectation‐maximization algorithm is presented, and a Monte Carlo method for spatial prediction is derived. Finally, an application to precipitation data is presented, and the performance of the non‐Gaussian models is compared with standard Gaussian and transformed Gaussian models through cross‐validation.  相似文献   

3.
We estimate model parameters of Lévy‐driven causal continuous‐time autoregressive moving average random fields by fitting the empirical variogram to the theoretical counterpart using a weighted least squares (WLS) approach. Subsequent to deriving asymptotic results for the variogram estimator, we show strong consistency and asymptotic normality of the parameter estimator. Furthermore, we conduct a simulation study to assess the quality of the WLS estimator for finite samples. For the simulation, we utilize numerical approximation schemes based on truncation and discretization of stochastic integrals and we analyze the associated simulation errors in detail. Finally, we apply our results to real data of the cosmic microwave background.  相似文献   

4.
We consider fast lattice approximation methods for a solution of a certain stochastic non‐local pseudodifferential operator equation. This equation defines a Matérn class random field. We approximate the pseudodifferential operator with truncated Taylor expansion, spectral domain error functional minimization and rounding approximations. This allows us to construct Gaussian Markov random field approximations. We construct lattice approximations with finite‐difference methods. We show that the solutions can be constructed with overdetermined systems of stochastic matrix equations with sparse matrices, and we solve the system of equations with a sparse Cholesky decomposition. We consider convergence of the truncated Taylor approximation by studying band‐limited Matérn fields. We consider the convergence of the discrete approximations to the continuous limits. Finally, we study numerically the accuracy of different approximation methods with an interpolation problem.  相似文献   

5.
We prove a central limit theorem for the quadratic variation process of some Lévy-Baxter-type Gaussian random fields.  相似文献   

6.
Abstract. Let {Zt}t 0 be a Lévy process with Lévy measure ν and let be a random clock, where g is a non‐negative function and is an ergodic diffusion independent of Z. Time‐changed Lévy models of the form are known to incorporate several important stylized features of asset prices, such as leptokurtic distributions and volatility clustering. In this article, we prove central limit theorems for a type of estimators of the integral parameter β(?):=∫?(x)ν(dx), valid when both the sampling frequency and the observation time‐horizon of the process get larger. Our results combine the long‐run ergodic properties of the diffusion process with the short‐term ergodic properties of the Lévy process Z via central limit theorems for martingale differences. The performance of the estimators are illustrated numerically for Normal Inverse Gaussian process Z and a Cox–Ingersoll–Ross process .  相似文献   

7.
《随机性模型》2013,29(4):549-577
Abstract

We look at a family of models for Internet traffic with increasing input rates and consider approximation models which exhibit self‐similarity at large time scales and multifractality at small time scales. Depending on whether the input rate is fast or slow, the total cumulative input traffic can be approximated by a self‐similar stable Lévy motion or a self‐similar Gaussian process. The stable Lévy limit does not depend on the behavior of the individual transmission schedules but the Gaussian limit does. Also, the models and their approximations show multifractal behavior at small time scales.  相似文献   

8.
Lévy processes are defined as processes with stationary independent increments and have become increasingly popular as models in queueing, finance, etc.; apart from Brownian motion and compound Poisson processes, some popular examples are stable processes, variance gamma processes, CGMY Lévy processes (tempered stable processes), NIG (normal inverse Gaussian) Lévy processes, and hyperbolic Lévy processes. We consider here a dense class of Lévy processes, compound Poisson processes with phase-type jumps in both directions and an added Brownian component. Within this class, we survey how to explicitly compute a number of quantities that are traditionally studied in the area of Lévy processes, in particular two-sided exit probabilities and associated Laplace transforms, the closely related scale function, one-sided exit probabilities and associated Laplace transforms coming up in queueing problems, and similar quantities for a Lévy process with reflection in 0. The solutions are in terms of roots to polynomials, and the basic equations are derived by purely probabilistic arguments using martingale optional stopping; a particularly useful martingale is the so-called Kella-Whitt martingale. Also, the relation to fluid models with a Brownian component is discussed.  相似文献   

9.
We describe a class of random field models for geostatistical count data based on Gaussian copulas. Unlike hierarchical Poisson models often used to describe this type of data, Gaussian copula models allow a more direct modelling of the marginal distributions and association structure of the count data. We study in detail the correlation structure of these random fields when the family of marginal distributions is either negative binomial or zero‐inflated Poisson; these represent two types of overdispersion often encountered in geostatistical count data. We also contrast the correlation structure of one of these Gaussian copula models with that of a hierarchical Poisson model having the same family of marginal distributions, and show that the former is more flexible than the latter in terms of range of feasible correlation, sensitivity to the mean function and modelling of isotropy. An exploratory analysis of a dataset of Japanese beetle larvae counts illustrate some of the findings. All of these investigations show that Gaussian copula models are useful alternatives to hierarchical Poisson models, specially for geostatistical count data that display substantial correlation and small overdispersion.  相似文献   

10.
The Lévy copula can describe the dependence structure of a multidimensional Lévy process or a multivariate infinitely divisible random variable. Suppose the Lévy copula of a multidimensional Lévy process is known. We present the Lévy copula of the Lévy measure of the moving average driven by the multidimensional Lévy process. If there exist some special dependence structures among the components of the Lévy process, we give some dependence invariance properties after the transform of the moving average.  相似文献   

11.
《随机性模型》2013,29(3):287-298
Let X=(X(t) : t≥0) be a Lévy process. In simulation, one often wants to know at what size it is possible to truncate the small jumps while retaining enough accuracy. A useful tool here is the Edgeworth expansion. We provide a third order expansion together with a uniform error bound, assuming third Lévy moment is 0. We next discuss approximating X in the finite variation case. Truncating the small jumps, we show that, adding their expected value, and further, including their variability by approximating by a Brownian motion, gives successively better results in general. Finally, some numerical illustrations involving a normal inverse Gaussian Lévy process are given.  相似文献   

12.
We develop statistical procedures for estimating shape and orientation of arbitrary three‐dimensional particles. We focus on the case where particles cannot be observed directly, but only via sections. Volume tensors are used for describing particle shape and orientation, and we derive stereological estimators of the tensors. These estimators are combined to provide consistent estimators of the moments of the so‐called particle cover density. The covariance structure associated with the particle cover density depends on the orientation and shape of the particles. For instance, if the distribution of the typical particle is invariant under rotations, then the covariance matrix is proportional to the identity matrix. We develop a non‐parametric test for such isotropy. A flexible Lévy‐based particle model is proposed, which may be analysed using a generalized method of moments in which the volume tensors enter. The developed methods are used to study the cell organization in the human brain cortex.  相似文献   

13.
Stochastic models for three-dimensional particles have many applications in applied sciences. Lévy–based particle models are a flexible approach to particle modelling. The structure of the random particles is given by a kernel smoothing of a Lévy basis. The models are easy to simulate but statistical inference procedures have not yet received much attention in the literature. The kernel is not always identifiable and we suggest one approach to remedy this problem. We propose a method to draw inference about the kernel from data often used in local stereology and study the performance of our approach in a simulation study.  相似文献   

14.
In this paper, we consider parametric Bayesian inference for stochastic differential equations driven by a pure‐jump stable Lévy process, which is observed at high frequency. In most cases of practical interest, the likelihood function is not available; hence, we use a quasi‐likelihood and place an associated prior on the unknown parameters. It is shown under regularity conditions that there is a Bernstein–von Mises theorem associated to the posterior. We then develop a Markov chain Monte Carlo algorithm for Bayesian inference, and assisted with theoretical results, we show how to scale Metropolis–Hastings proposals when the frequency of the data grows, in order to prevent the acceptance ratio from going to zero in the large data limit. Our algorithm is presented on numerical examples that help verify our theoretical findings.  相似文献   

15.
We show that a necessary and sufficient condition for the sum of iid random vectors to converge (under appropriate centering and scaling) to a multivariate Gaussian distribution is that the truncated second moment matrix is slowly varying at infinity. This is more natural than the standard conditions, and allows for the possibility that the limiting Gaussian distribution is degenerate (so long as it is not concentrated at a point). We also give necessary and sufficient conditions for a d-dimensional Lévy process to converge (under appropriate centering and scaling) to a multivariate Gaussian distribution as time approaches zero or infinity.  相似文献   

16.
Fitting Gaussian Markov Random Fields to Gaussian Fields   总被引:3,自引:0,他引:3  
This paper discusses the following task often encountered in building Bayesian spatial models: construct a homogeneous Gaussian Markov random field (GMRF) on a lattice with correlation properties either as present in some observed data, or consistent with prior knowledge. The Markov property is essential in designing computationally efficient Markov chain Monte Carlo algorithms to analyse such models. We argue that we can restate both tasks as that of fitting a GMRF to a prescribed stationary Gaussian field on a lattice when both local and global properties are important. We demonstrate that using the KullbackLeibler discrepancy often fails for this task, giving severely undesirable behaviour of the correlation function for lags outside the neighbourhood. We propose a new criterion that resolves this difficulty, and demonstrate that GMRFs with small neighbourhoods can approximate Gaussian fields surprisingly well even with long correlation lengths. Finally, we discuss implications of our findings for likelihood based inference for general Markov random fields when global properties are also important.  相似文献   

17.
Abstract. In numerous applications data are observed at random times and an estimated graph of the spectral density may be relevant for characterizing and explaining phenomena. By using a wavelet analysis, one derives a non‐parametric estimator of the spectral density of a Gaussian process with stationary increments (or a stationary Gaussian process) from the observation of one path at random discrete times. For every positive frequency, this estimator is proved to satisfy a central limit theorem with a convergence rate depending on the roughness of the process and the moment of random durations between successive observations. In the case of stationary Gaussian processes, one can compare this estimator with estimators based on the empirical periodogram. Both estimators reach the same optimal rate of convergence, but the estimator based on wavelet analysis converges for a different class of random times. Simulation examples and an application to biological data are also provided.  相似文献   

18.
ABSTRACT

In this article, we obtain the uniform local asymptotics for a Lévy process with a heavy-tailed Lévy measure and for the overshoot and undershoot of the Lévy process. As applications, we get the uniform asymptotics of the finite-time ruin probability and the local ruin probability for the Lévy risk model with a heavy-tailed Lévy measure. By the above results, we find that in the compound Poisson model perturbed by a Brownian motion, the effect of the Brownian component on the asymptotics of the finite-time ruin probability and the local ruin probability washes out.  相似文献   

19.
Abstract.  For stationary vector-valued random fields on     the asymptotic covariance matrix for estimators of the mean vector can be given by integrated covariance functions. To construct asymptotic confidence intervals and significance tests for the mean vector, non-parametric estimators of these integrated covariance functions are required. Integrability conditions are derived under which the estimators of the covariance matrix are mean-square consistent. For random fields induced by stationary Boolean models with convex grains, these conditions are expressed by sufficient assumptions on the grain distribution. Performance issues are discussed by means of numerical examples for Gaussian random fields and the intrinsic volume densities of planar Boolean models with uniformly bounded grains.  相似文献   

20.
Summary. Rainfall data are often collected at coarser spatial scales than required for input into hydrology and agricultural models. We therefore describe a spatiotemporal model which allows multiple imputation of rainfall at fine spatial resolutions, with a realistic dependence structure in both space and time and with the total rainfall at the coarse scale consistent with that observed. The method involves the transformation of the fine scale rainfall to a thresholded Gaussian process which we model as a Gaussian Markov random field. Gibbs sampling is then used to generate realizations of rainfall efficiently at the fine scale. Results compare favourably with previous, less elegant methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号