共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a Bayesian analysis of the projected normal distribution, which is a flexible and useful distribution for the analysis of directional data. We obtain samples from the posterior distribution using the Gibbs sampler after the introduction of suitably chosen latent variables. The procedure is illustrated using simulated data as well as a real data set previously analysed in the literature. 相似文献
2.
Douglas M. Hawkins 《Journal of applied statistics》2017,44(8):1319-1332
The von Mises distribution is widely used for modeling angular data. When such data are seen in a quality control setting, there may be interest in checking whether the values are in statistical control or have gone out of control. A cumulative sum (cusum) control chart has desirable properties for checking whether the distribution has changed from an in-control to an out-of-control setting. This paper develops cusums for a change in the mean direction and concentration of angular data and illustrates some of their properties. 相似文献
3.
4.
In this paper, we discuss a simple fully Bayesian analysis of the change-point problem for the directional data in the parametric framework with von Mises or circular normal distribution as the underlying distribution. We first discuss the problem of detecting change in the mean direction of the circular normal distribution using a latent variable approach when the concentration parameter is unknown. Then, a simpler approach, beginning with proper priors for all the unknown parameters – the sampling importance resampling technique – is used to obtain the posterior marginal distribution of the change-point. The method is illustrated using the wind data [E.P. Weijers, A. Van Delden, H.F. Vugts and A.G.C.A. Meesters, The composite horizontal wind field within convective structures of the atmospheric surface layer, J. Atmos. Sci. 52 (1995. 3866–3878]. The method can be adapted for a variety of situations involving both angular and linear data and can be used with profit in the context of statistical process control in Phase I of control charting and also in Phase II in conjunction with control charts. 相似文献
5.
Douglas M. Hawkins 《Journal of applied statistics》2015,42(1):88-97
Circular data – data whose values lie in the interval [0,2π) – are important in a number of application areas. In some, there is a suspicion that a sequence of circular readings may contain two or more segments following different models. An analysis may then seek to decide whether there are multiple segments, and if so, to estimate the changepoints separating them. This paper presents an optimal method for segmenting sequences of data following the von Mises distribution. It is shown by example that the method is also successful in data following a distribution with much heavier tails. 相似文献
6.
In this paper, we propose two multimodal circular distributions which are suitable for modeling circular data sets with two or more modes. Both distributions belong to the regular exponential family of distributions and are considered as extensions of the von Mises distribution. Hence, they possess the highly desirable properties, such as the existence of non-trivial sufficient statistics and optimal inferences for their parameters. Fine particulates (PM2.5) are generally emitted from activities such as industrial and residential combustion and from vehicle exhaust. We illustrate the utility of our proposed models using a real data set consisting of fine particulates (PM2.5) pollutant levels in Houston region during Fall season in 2019. Our results provide a strong evidence that its diurnal pattern exhibits four modes; two peaks during morning and evening rush hours and two peaks in between. 相似文献
7.
Wen-Liang Hung Shou-Jen Chang-Chien Miin-Shen Yang 《Journal of applied statistics》2012,39(10):2259-2274
The EM algorithm is the standard method for estimating the parameters in finite mixture models. Yang and Pan [25] proposed a generalized classification maximum likelihood procedure, called the fuzzy c-directions (FCD) clustering algorithm, for estimating the parameters in mixtures of von Mises distributions. Two main drawbacks of the EM algorithm are its slow convergence and the dependence of the solution on the initial value used. The choice of initial values is of great importance in the algorithm-based literature as it can heavily influence the speed of convergence of the algorithm and its ability to locate the global maximum. On the other hand, the algorithmic frameworks of EM and FCD are closely related. Therefore, the drawbacks of FCD are the same as those of the EM algorithm. To resolve these problems, this paper proposes another clustering algorithm, which can self-organize local optimal cluster numbers without using cluster validity functions. These numerical results clearly indicate that the proposed algorithm is superior in performance of EM and FCD algorithms. Finally, we apply the proposed algorithm to two real data sets. 相似文献
8.
《Journal of Statistical Computation and Simulation》2012,82(4):319-332
The maximum entropy characterization of the von Mises distribution on the circle is exploited to derive a consistent goodness of fit test for the von Mises distribution. Monte Carlo simulation results are tabulated giving critical values of the test statistic for various sample sizes and values of the concentration parameter. A power analysis is presented for various alternative hypotheses, comparing this entropy statistic to two other competing goodness of fit statistics. The entropy statistic is shown to compare favorably and may be more attractive, especially considering its ease of computation. 相似文献
9.
This paper considers the three-parameter family of symmetric unimodal circular distributions proposed by Batschelet in [1], an extension of the von Mises distribution containing distributional forms ranging from the highly leptokurtic to the very platykurtic. The family's fundamental properties are given, and likelihood-based techniques described which can be used to perform estimation and hypothesis testing. Analyses are presented of two data sets which illustrate how the family and three of its most direct competitors can be applied in the search for parsimonious models for circular data. 相似文献
10.
M. Di Marzio S. Fensore C.C. Taylor 《Journal of Statistical Computation and Simulation》2016,86(13):2573-2582
ABSTRACTThe conditional density offers the most informative summary of the relationship between explanatory and response variables. We need to estimate it in place of the simple conditional mean when its shape is not well-behaved. A motivation for estimating conditional densities, specific to the circular setting, lies in the fact that a natural alternative of it, like quantile regression, could be considered problematic because circular quantiles are not rotationally equivariant. We treat conditional density estimation as a local polynomial fitting problem as proposed by Fan et al. [Estimation of conditional densities and sensitivity measures in nonlinear dynamical systems. Biometrika. 1996;83:189–206] in the Euclidean setting, and discuss a class of estimators in the cases when the conditioning variable is either circular or linear. Asymptotic properties for some members of the proposed class are derived. The effectiveness of the methods for finite sample sizes is illustrated by simulation experiments and an example using real data. 相似文献
11.
This article focuses on estimating an autoregressive regression model for circular time series data. Simulation studies have shown the difficulties involved in obtaining good estimates from low concentration data or from small samples. It presents an application using real data. 相似文献
12.
Previous authors have made Bayesian multinomial probit models identifiable by fixing a parameter on the main diagonal of the covariance matrix. The choice of which element one fixes can influence posterior predictions. Thus, we propose restricting the trace of the covariance matrix, which we achieve without computational penalty. This permits a prior that is symmetric to permutations of the nonbase outcome categories. We find in real and simulated consumer choice datasets that the trace-restricted model is less prone to making extreme predictions. Further, the trace restriction can provide stronger identification, yielding marginal posterior distributions that are more easily interpreted. 相似文献
13.
Juan Kalemkerian 《统计学通讯:理论与方法》2019,48(16):3956-3975
14.
Circular data are observations that are represented as points on a unit circle. Times of day and directions of wind are two such examples. In this work, we present a Bayesian approach to regress a circular variable on a linear predictor. The regression coefficients are assumed to have a nonparametric distribution with a Dirichlet process prior. The semiparametric Bayesian approach gives added flexibility to the model and is useful especially when the likelihood surface is ill behaved. Markov chain Monte Carlo techniques are used to fit the proposed model and to generate predictions. The method is illustrated using an environmental data set. 相似文献
15.
Many study designs yield a variety of outcomes from each subject clustered within an experimental unit. When these outcomes are of mixed data types, it is challenging to jointly model the effects of covariates on the responses using traditional methods. In this paper, we develop a Bayesian approach for a joint regression model of the different outcome variables and show that the fully conditional posterior distributions obtained under the model assumptions allow for estimation of posterior distributions using Gibbs sampling algorithm. 相似文献
16.
Implementation of a full Bayesian non-parametric analysis involving neutral to the right processes (apart from the special case of the Dirichlet process) has been difficult for two reasons: first, the posterior distributions are complex and therefore only Bayes estimates (posterior expectations) have previously been presented; secondly, it is difficult to obtain an interpretation for the parameters of a neutral to the right process. In this paper we extend Ferguson & Phadia (1979) by presenting a general method for specifying the prior mean and variance of a neutral to the right process, providing the interpretation of the parameters. Additionally, we provide the basis for a full Bayesian analysis, via simulation, from the posterior process using a hybrid of new algorithms that is applicable to a large class of neutral to the right processes (Ferguson & Phadia only provide posterior means). The ideas are exemplified through illustrative analyses. 相似文献
17.
18.
19.
We propose methods for Bayesian inference for missing covariate data with a novel class of semi-parametric survival models with a cure fraction. We allow the missing covariates to be either categorical or continuous and specify a parametric distribution for the covariates that is written as a sequence of one dimensional conditional distributions. We assume that the missing covariates are missing at random (MAR) throughout. We propose an informative class of joint prior distributions for the regression coefficients and the parameters arising from the covariate distributions. The proposed class of priors are shown to be useful in recovering information on the missing covariates especially in situations where the missing data fraction is large. Properties of the proposed prior and resulting posterior distributions are examined. Also, model checking techniques are proposed for sensitivity analyses and for checking the goodness of fit of a particular model. Specifically, we extend the Conditional Predictive Ordinate (CPO) statistic to assess goodness of fit in the presence of missing covariate data. Computational techniques using the Gibbs sampler are implemented. A real data set involving a melanoma cancer clinical trial is examined to demonstrate the methodology. 相似文献
20.
In this paper, we develop a conditional model for analyzing mixed bivariate continuous and ordinal longitudinal responses. We propose a quantile regression model with random effects for analyzing continuous responses. For this purpose, an Asymmetric Laplace Distribution (ALD) is allocated for continuous response given random effects. For modeling ordinal responses, a cumulative logit model is used, via specifying a latent variable model, with considering other random effects. Therefore, the intra-association between continuous and ordinal responses is taken into account using their own exclusive random effects. But, the inter-association between two mixed responses is taken into account by adding a continuous response term in the ordinal model. We use a Bayesian approach via Markov chain Monte Carlo method for analyzing the proposed conditional model and to estimate unknown parameters, a Gibbs sampler algorithm is used. Moreover, we illustrate an application of the proposed model using a part of the British Household Panel Survey data set. The results of data analysis show that gender, age, marital status, educational level and the amount of money spent on leisure have significant effects on annual income. Also, the associated parameter is significant in using the best fitting proposed conditional model, thus it should be employed rather than analyzing separate models. 相似文献