首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Estimating function inference is indispensable for many common point process models where the joint intensities are tractable while the likelihood function is not. In this article, we establish asymptotic normality of estimating function estimators in a very general setting of nonstationary point processes. We then adapt this result to the case of nonstationary determinantal point processes, which are an important class of models for repulsive point patterns. In practice, often first‐ and second‐order estimating functions are used. For the latter, it is a common practice to omit contributions for pairs of points separated by a distance larger than some truncation distance, which is usually specified in an ad hoc manner. We suggest instead a data‐driven approach where the truncation distance is adapted automatically to the point process being fitted and where the approach integrates seamlessly with our asymptotic framework. The good performance of the adaptive approach is illustrated via simulation studies for non‐stationary determinantal point processes and by an application to a real dataset.  相似文献   

2.
We consider situations where subjects in a longitudinal study experience recurrent events. However, the events are observed only in the form of counts for intervals which can vary across subjects. Methods for estimating the mean and rate functions of the recurrent-event processes are presented, based on loglinear regression models which incorporate piecewise-constant baseline rate functions. Robust methods and methods based on mixed Poisson processes are compared in a simulation study and in an example involving superficial bladder tumours in humans. Both approaches provide a simple and effective way to deal with interval-grouped data.  相似文献   

3.
A class of bivariate continuous-discrete distributions is proposed to fit Poisson dynamic models in a single unified framework via bivariate mixture transition distributions (BMTDs). Potential advantages of this class over the current models include its ability to capture stretches, bursts and nonlinear patterns characterized by Internet network traffic, high-frequency financial data and many others. It models the inter-arrival times and the number of arrivals (marks) in a single unified model which benefits from the dependence structure of the data. The continuous marginal distributions of this class include as special cases the exponential, gamma, Weibull and Rayleigh distributions (for the inter-arrival times), whereas the discrete marginal distributions are geometric and negative binomial. The conditional distributions are Poisson and Erlang. Maximum-likelihood estimation is discussed and parameter estimates are obtained using an expectation–maximization algorithm, while the standard errors are estimated using the missing information principle. It is shown via real data examples that the proposed BMTD models appear to capture data features better than other competing models.  相似文献   

4.
5.
A two-step estimation approach is proposed for the fixed-effect parameters, random effects and their variance σ2 of a Poisson mixed model. In the first step, it is proposed to construct a small σ2-based approximate likelihood function of the data and utilize this function to estimate the fixed-effect parameters and σ2. In the second step, the random effects are estimated by minimizing their posterior mean squared error. Methods of Waclawiw and Liang (1993) based on so-called Stein-type estimating functions and of Breslow and Clayton (1993) based on penalized quasilikelihood are compared with the proposed likelihood method. The results of a simulation study on the performance of all three approaches are reported.  相似文献   

6.
Recurrent event data arise commonly in medical and public health studies. The analysis of such data has received extensive research attention and various methods have been developed in the literature. Depending on the focus of scientific interest, the methods may be broadly classified as intensity‐based counting process methods, mean function‐based estimating equation methods, and the analysis of times to events or times between events. These methods and models cover a wide variety of practical applications. However, there is a critical assumption underlying those methods–variables need to be correctly measured. Unfortunately, this assumption is frequently violated in practice. It is quite common that some covariates are subject to measurement error. It is well known that covariate measurement error can substantially distort inference results if it is not properly taken into account. In the literature, there has been extensive research concerning measurement error problems in various settings. However, with recurrent events, there is little discussion on this topic. It is the objective of this paper to address this important issue. In this paper, we develop inferential methods which account for measurement error in covariates for models with multiplicative intensity functions or rate functions. Both likelihood‐based inference and robust inference based on estimating equations are discussed. The Canadian Journal of Statistics 40: 530–549; 2012 © 2012 Statistical Society of Canada  相似文献   

7.
In this paper, we introduce new parametric and semiparametric regression techniques for a recurrent event process subject to random right censoring. We develop models for the cumulative mean function and provide asymptotically normal estimators. Our semiparametric model which relies on a single-index assumption can be seen as a dimension reduction technique that, contrary to a fully nonparametric approach, is not stroke by the curse of dimensionality when the number of covariates is high. We discuss data-driven techniques to choose the parameters involved in the estimation procedures and provide a simulation study to support our theoretical results.  相似文献   

8.
Fong  Daniel Y.T.  Lam  K.F.  Lawless  J.F.  Lee  Y.W. 《Lifetime data analysis》2001,7(4):345-362
We consider recurrent event data when the duration or gap times between successive event occurrences are of intrinsic interest. Subject heterogeneity not attributed to observed covariates is usually handled by random effects which result in an exchangeable correlation structure for the gap times of a subject. Recently, efforts have been put into relaxing this restriction to allow non-exchangeable correlation. Here we consider dynamic models where random effects can vary stochastically over the gap times. We extend the traditional Gaussian variance components models and evaluate a previously proposed proportional hazards model through a simulation study and some examples. Besides, semiparametric estimation of the proportional hazards models is considered. Both models are easily used. The Gaussian models are easily interpreted in terms of the variance structure. On the other hand, the proportional hazards models would be more appropriate in the context of survival analysis, particularly in the interpretation of the regression parameters. They can be sensitive to the choice of model for random effects but not to the choice of the baseline hazard function.  相似文献   

9.
In spatial statistics the data typically consist of measurements of some quantity at irregularly scattered locations; in other words, the data form a realization of a marked point process. In this paper, we formulate subsampling estimators of the moments of general statistics computed from marked point process data, and we establish their L 2-consistency. The variance estimator in particular can be used for the construction of confidence intervals for estimated parameters. A practical data-based method for choosing a subsampling parameter is given and illustrated on a data set. Finite sample simulation examples are also presented.  相似文献   

10.
This paper presents a simple procedure for estimating the parameters of bivariate discrete distributions. The procedure uses the marginal means and certain observed frequencies in one or more conditional distributions. The bivariate Poisson and Negative Binomial distributions are used as illustrative examples, Parameter estimators are derived and asymptotic efficiencies are examined for various parameter values.  相似文献   

11.
Bayesian inference for pairwise interacting point processes   总被引:1,自引:0,他引:1  
Pairwise interacting point processes are commonly used to model spatial point patterns. To perform inference, the established frequentist methods can produce good point estimates when the interaction in the data is moderate, but some methods may produce severely biased estimates when the interaction in strong. Furthermore, because the sampling distributions of the estimates are unclear, interval estimates are typically obtained by parametric bootstrap methods. In the current setting however, the behavior of such estimates is not well understood. In this article we propose Bayesian methods for obtaining inferences in pairwise interacting point processes. The requisite application of Markov chain Monte Carlo (MCMC) techniques is complicated by an intractable function of the parameters in the likelihood. The acceptance probability in a Metropolis-Hastings algorithm involves the ratio of two likelihoods evaluated at differing parameter values. The intractable functions do not cancel, and hence an intractable ratio r must be estimated within each iteration of a Metropolis-Hastings sampler. We propose the use of importance sampling techniques within MCMC to address this problem. While r may be estimated by other methods, these, in general, are not readily applied in a Bayesian setting. We demonstrate the validity of our importance sampling approach with a small simulation study. Finally, we analyze the Swedish pine sapling dataset (Strand 1972) and contrast the results with those in the literature.  相似文献   

12.
It is well known that in a traditional outlier-free situation, the generalized quasi-likelihood (GQL) approach [B.C. Sutradhar, On exact quasilikelihood inference in generalized linear mixed models, Sankhya: Indian J. Statist. 66 (2004), pp. 261–289] performs very well to obtain the consistent as well as the efficient estimates for the parameters involved in the generalized linear mixed models (GLMMs). In this paper, we first examine the effect of the presence of one or more outliers on the GQL estimation for the parameters in such GLMMs, especially in two important models such as count and binary mixed models. The outliers appear to cause serious biases and hence inconsistency in the estimation. As a remedy, we then propose a robust GQL (RGQL) approach in order to obtain the consistent estimates for the parameters in the GLMMs in the presence of one or more outliers. An extensive simulation study is conducted to examine the consistency performance of the proposed RGQL approach.  相似文献   

13.
This article analyses diffusion-type processes from a new point-of-view. Consider two statistical hypotheses on a diffusion process. We do not use a classical test to reject or accept one hypothesis using the Neyman–Pearson procedure and do not involve Bayesian approach. As an alternative, we propose using a likelihood paradigm to characterizing the statistical evidence in support of these hypotheses. The method is based on evidential inference introduced and described by Royall [Royall R. Statistical evidence: a likelihood paradigm. London: Chapman and Hall; 1997]. In this paper, we extend the theory of Royall to the case when data are observations from a diffusion-type process instead of iid observations. The empirical distribution of likelihood ratio is used to formulate the probability of strong, misleading and weak evidences. Since the strength of evidence can be affected by the sampling characteristics, we present a simulation study that demonstrates these effects. Also we try to control misleading evidence and reduce them by adjusting these characteristics. As an illustration, we apply the method to the Microsoft stock prices.  相似文献   

14.
Recurrent event data often arise in longitudinal studies. In many applications, subjects may experience two different types of events alternatively over time or a pair of subjects may experience recurrent events of the same type. Medical advances have made it possible for some patients to be cured such that the disease of interest does not recur. In this article, we consider non parametric analysis of bivariate recurrent event data with cure fraction. Using the inverse-probability weighted (IPW) approach, we propose non parametric estimators for the proportion of cured patients and for the joint distribution functions of bivariate recurrence times of the uncured ones. The asymptotic properties of the proposed estimators are established. Simulation study indicates that the proposed estimators perform well in finite samples.  相似文献   

15.
Cell lineage data consist of observations on quantitative characteristics of the descendants of an initial cell, recorded as a tree so that the relationships between the cells may be determined. The bifurcating autoregressive model of Cowan & Staudte (1986) has been used previously to model univariate characteristics of cell linkage data. Here we extend this model to analyze bivariate cell data. Both maximum likelihood and robust estimators are derived for both balanced and unbalanced cell lineage trees and are applied to a real dataset to estimate the correlation between cell lifetime and final cell diameter.  相似文献   

16.
Multivariate data arise frequently in biomedical and health studies where multiple response variables are collected across subjects. Unlike a univariate procedure fitting each response separately, a multivariate regression model provides a unique opportunity in studying the joint evolution of various response variables. In this paper, we propose two estimation procedures that improve estimation efficiency for the regression parameter by accommodating correlations among the response variables. The proposed procedures do not require knowledge of the true correlation structure nor does it estimate the parameters associated with the correlation. Theoretical and simulation results confirm that the proposed estimators are more efficient than the one obtained from the univariate approach. We further propose simple and powerful inference procedures for a goodness-of-fit test that possess the chi-squared asymptotic properties. Extensive simulation studies suggest that the proposed tests are more powerful than the Wald test based on the univariate procedure. The proposed methods are also illustrated through the mother’s stress and children’s morbidity study.  相似文献   

17.
Summary.  We develop Markov chain Monte Carlo methodology for Bayesian inference for non-Gaussian Ornstein–Uhlenbeck stochastic volatility processes. The approach introduced involves expressing the unobserved stochastic volatility process in terms of a suitable marked Poisson process. We introduce two specific classes of Metropolis–Hastings algorithms which correspond to different ways of jointly parameterizing the marked point process and the model parameters. The performance of the methods is investigated for different types of simulated data. The approach is extended to consider the case where the volatility process is expressed as a superposition of Ornstein–Uhlenbeck processes. We apply our methodology to the US dollar–Deutschmark exchange rate.  相似文献   

18.
The author develops a robust quasi‐likelihood method, which appears to be useful for down‐weighting any influential data points when estimating the model parameters. He illustrates the computational issues of the method in an example. He uses simulations to study the behaviour of the robust estimates when data are contaminated with outliers, and he compares these estimates to those obtained by the ordinary quasi‐likelihood method.  相似文献   

19.
In this paper, we consider a generalisation of the backward simulation method of Duch et al. [New approaches to operational risk modeling. IBM J Res Develop. 2014;58:1–9] to build bivariate Poisson processes with flexible time correlation structures, and to simulate the arrival times of the processes. The proposed backward construction approach uses the Marshall–Olkin bivariate binomial distribution for the conditional law and some well-known families of bivariate copulas for the joint success probability in lieu of the typical conditional independence assumption. The resulting bivariate Poisson process can exhibit various time correlation structures which are commonly observed in real data.  相似文献   

20.
The paper develops some objective priors for correlation coefficient of the bivariate normal distribution. The criterion used is the asymptotic matching of coverage probabilities of Bayesian credible intervals with the corresponding frequentist coverage probabilities. The paper uses various matching criteria, namely, quantile matching, highest posterior density matching, and matching via inversion of test statistics. Each matching criterion leads to a different prior for the parameter of interest. We evaluate their performance by comparing credible intervals through simulation studies. In addition, inference through several likelihood-based methods have been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号