首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is well known that the normal mixture with unequal variance has unbounded likelihood and thus the corresponding global maximum likelihood estimator (MLE) is undefined. One of the commonly used solutions is to put a constraint on the parameter space so that the likelihood is bounded and then one can run the EM algorithm on this constrained parameter space to find the constrained global MLE. However, choosing the constraint parameter is a difficult issue and in many cases different choices may give different constrained global MLE. In this article, we propose a profile log likelihood method and a graphical way to find the maximum interior mode. Based on our proposed method, we can also see how the constraint parameter, used in the constrained EM algorithm, affects the constrained global MLE. Using two simulation examples and a real data application, we demonstrate the success of our new method in solving the unboundness of the mixture likelihood and locating the maximum interior mode.  相似文献   

2.
The EM algorithm is a popular method for maximizing a likelihood in the presence of incomplete data. When the likelihood has multiple local maxima, the parameter space can be partitioned into domains of convergence, one for each local maximum. In this paper we investigate these domains for the location family generated by the t-distribution. We show that, perhaps somewhat surprisingly, these domains need not be connected sets. As an extreme case we give an example of a domain which consists of an infinite union of disjoint open intervals. Thus the convergence behaviour of the EM algorithm can be quite sensitive to the starting point.  相似文献   

3.
The EM algorithm is a popular method for computing maximum likelihood estimates or posterior modes in models that can be formulated in terms of missing data or latent structure. Although easy implementation and stable convergence help to explain the popularity of the algorithm, its convergence is sometimes notoriously slow. In recent years, however, various adaptations have significantly improved the speed of EM while maintaining its stability and simplicity. One especially successful method for maximum likelihood is known as the parameter expanded EM or PXEM algorithm. Unfortunately, PXEM does not generally have a closed form M-step when computing posterior modes, even when the corresponding EM algorithm is in closed form. In this paper we confront this problem by adapting the one-step-late EM algorithm to PXEM to establish a fast closed form algorithm that improves on the one-step-late EM algorithm by insuring monotone convergence. We use this algorithm to fit a probit regression model and a variety of dynamic linear models, showing computational savings of as much as 99.9%, with the biggest savings occurring when the EM algorithm is the slowest to converge.  相似文献   

4.
This paper examines the formation of maximum likelihood estimates of cell means in analysis of variance problems for cells with missing observations. Methods of estimating the means for missing cells has a long history which includes iterative maximum likelihood techniques, approximation techniques and ad hoc techniques. The use of the EM algorithm to form maximum likelihood estimates has resolved most of the issues associated with this problem. Implementation of the EM algorithm entails specification of a reduced model. As demonstrated in this paper, when there are several missing cells, it is possible to specify a reduced model that results in an unidentifiable likelihood. The EM algorithm in this case does not converge, although the slow divergence may often be mistaken by the unwary as convergence. This paper presents a simple matrix method of determining whether or not the reduced model results in an identifiable likelihood, and consequently in an EM algorithm that converges. We also show the EM algorithm in this case to be equivalent to a method which yields a closed form solution.  相似文献   

5.
The complete-data model that underlies an Expectation-Maximization (EM) algorithm must have a parameter space that coincides with the parameter space of the observed-data model. Otherwise, maximization of the observed-data log-likelihood will be carried out over a space that does not coincide with the desired parameter space. In some contexts, however, a natural complete-data model may be defined only for parameter values within a subset of the observed-data parameter space. In this paper we discuss situations where this can still be useful if the complete-data model can be viewed as a member of a finite family of complete-data models that have parameter spaces which collectively cover the observed-data parameter space. Such a family of complete-data models defines a family of EM algorithms which together lead to a finite collection of constrained maxima of the observed-data log-likelihood. Maximization of the log-likelihood function over the full parameter space then involves identifying the constrained maximum that achieves the greatest log-likelihood value. Since optimization over a finite collection of candidates is referred to as combinatorial optimization, we refer to such a family of EM algorithms as a combinatorial EM (CEM) algorithm. As well as discussing the theoretical concepts behind CEM algorithms, we discuss strategies for improving the computational efficiency when the number of complete-data models is large. Various applications of CEM algorithms are also discussed, ranging from simple examples that illustrate the concepts, to more substantive examples that demonstrate the usefulness of CEM algorithms in practice.  相似文献   

6.
In this article, by using the constant and random selection matrices, several properties of the maximum likelihood (ML) estimates and the ML estimator of a normal distribution with missing data are derived. The constant selection matrix allows us to obtain an explicit form of the ML estimates and the exact relationship between the EM algorithm and the score function. The random selection matrix allows us to clarify how the missing-data mechanism works in the proof of the consistency of the ML estimator, to derive the asymptotic properties of the sequence by the EM algorithm, and to derive the information matrix.  相似文献   

7.
Estimators derived from the expectation‐maximization (EM) algorithm are not robust since they are based on the maximization of the likelihood function. We propose an iterative proximal‐point algorithm based on the EM algorithm to minimize a divergence criterion between a mixture model and the unknown distribution that generates the data. The algorithm estimates in each iteration the proportions and the parameters of the mixture components in two separate steps. Resulting estimators are generally robust against outliers and misspecification of the model. Convergence properties of our algorithm are studied. The convergence of the introduced algorithm is discussed on a two‐component Weibull mixture entailing a condition on the initialization of the EM algorithm in order for the latter to converge. Simulations on Gaussian and Weibull mixture models using different statistical divergences are provided to confirm the validity of our work and the robustness of the resulting estimators against outliers in comparison to the EM algorithm. An application to a dataset of velocities of galaxies is also presented. The Canadian Journal of Statistics 47: 392–408; 2019 © 2019 Statistical Society of Canada  相似文献   

8.
We present a maximum likelihood estimation procedure for the multivariate frailty model. The estimation is based on a Monte Carlo EM algorithm. The expectation step is approximated by averaging over random samples drawn from the posterior distribution of the frailties using rejection sampling. The maximization step reduces to a standard partial likelihood maximization. We also propose a simple rule based on the relative change in the parameter estimates to decide on sample size in each iteration and a stopping time for the algorithm. An important new concept is acquiring absolute convergence of the algorithm through sample size determination and an efficient sampling technique. The method is illustrated using a rat carcinogenesis dataset and data on vase lifetimes of cut roses. The estimation results are compared with approximate inference based on penalized partial likelihood using these two examples. Unlike the penalized partial likelihood estimation, the proposed full maximum likelihood estimation method accounts for all the uncertainty while estimating standard errors for the parameters.  相似文献   

9.
Abstract.  The expectation-maximization (EM) algorithm is a popular approach for obtaining maximum likelihood estimates in incomplete data problems because of its simplicity and stability (e.g. monotonic increase of likelihood). However, in many applications the stability of EM is attained at the expense of slow, linear convergence. We have developed a new class of iterative schemes, called squared iterative methods (SQUAREM), to accelerate EM, without compromising on simplicity and stability. SQUAREM generally achieves superlinear convergence in problems with a large fraction of missing information. Globally convergent schemes are easily obtained by viewing SQUAREM as a continuation of EM. SQUAREM is especially attractive in high-dimensional problems, and in problems where model-specific analytic insights are not available. SQUAREM can be readily implemented as an 'off-the-shelf' accelerator of any EM-type algorithm, as it only requires the EM parameter updating. We present four examples to demonstrate the effectiveness of SQUAREM. A general-purpose implementation (written in R) is available.  相似文献   

10.
In most applications, the parameters of a mixture of linear regression models are estimated by maximum likelihood using the expectation maximization (EM) algorithm. In this article, we propose the comparison of three algorithms to compute maximum likelihood estimates of the parameters of these models: the EM algorithm, the classification EM algorithm and the stochastic EM algorithm. The comparison of the three procedures was done through a simulation study of the performance (computational effort, statistical properties of estimators and goodness of fit) of these approaches on simulated data sets.

Simulation results show that the choice of the approach depends essentially on the configuration of the true regression lines and the initialization of the algorithms.  相似文献   

11.
This article introduces a new asymmetric distribution constructed by assuming the multivariate normal mean-variance mixture model. Called normal mean-variance mixture of the Lindley distribution, we derive some mathematical properties of the new distribution. Also, a feasible maximum likelihood estimation procedure using the EM algorithm and the asymptotic standard errors of parameter estimates are developed. The performance of the proposed distribution is illustrated by means of real datasets and simulation analysis.  相似文献   

12.
The EM algorithm and its extensions are very popular tools for maximum likelihood estimation in incomplete data setting. However, one of the limitations of these methods is their slow convergence. The PX-EM (parameter-expanded EM) algorithm was proposed by Liu, Rubin and Wu to make EM much faster. On the other hand, stochastic versions of EM are powerful alternatives of EM when the E-step is untractable in a closed form. In this paper we propose the PX-SAEM which is a parameter expansion version of the so-called SAEM (Stochastic Approximation version of EM). PX-SAEM is shown to accelerate SAEM and improve convergence toward the maximum likelihood estimate in a parametric framework. Numerical examples illustrate the behavior of PX-SAEM in linear and nonlinear mixed effects models.  相似文献   

13.
In statistical models involving constrained or missing data, likelihoods containing integrals emerge. In the case of both constrained and missing data, the result is a ratio of integrals, which for multivariate data may defy exact or approximate analytic expression. Seeking maximum-likelihood estimates in such settings, we propose Monte Carlo approximants for these integrals, and subsequently maximize the resulting approximate likelihood. Iteration of this strategy expedites the maximization, while the Gibbs sampler is useful for the required Monte Carlo generation. As a result, we handle a class of models broader than the customary EM setting without using an EM-type algorithm. Implementation of the methodology is illustrated in two numerical examples.  相似文献   

14.
In this article, we present the performance of the maximum likelihood estimates of the Burr XII parameters for constant-stress partially accelerated life tests under multiple censored data. Two maximum likelihood estimation methods are considered. One method is based on observed-data likelihood function and the maximum likelihood estimates are obtained by using the quasi-Newton algorithm. The other method is based on complete-data likelihood function and the maximum likelihood estimates are derived by using the expectation-maximization (EM) algorithm. The variance–covariance matrices are derived to construct the confidence intervals of the parameters. The performance of these two algorithms is compared with each other by a simulation study. The simulation results show that the maximum likelihood estimation via the EM algorithm outperforms the quasi-Newton algorithm in terms of the absolute relative bias, the bias, the root mean square error and the coverage rate. Finally, a numerical example is given to illustrate the performance of the proposed methods.  相似文献   

15.
We propose here a robust multivariate extension of the bivariate Birnbaum–Saunders (BS) distribution derived by Kundu et al. [Bivariate Birnbaum–Saunders distribution and associated inference. J Multivariate Anal. 2010;101:113–125], based on scale mixtures of normal (SMN) distributions that are used for modelling symmetric data. This resulting multivariate BS-type distribution is an absolutely continuous distribution whose marginal and conditional distributions are of BS-type distribution of Balakrishnan et al. [Estimation in the Birnbaum–Saunders distribution based on scalemixture of normals and the EM algorithm. Stat Oper Res Trans. 2009;33:171–192]. Due to the complexity of the likelihood function, parameter estimation by direct maximization is very difficult to achieve. For this reason, we exploit the nice hierarchical representation of the proposed distribution to propose a fast and accurate EM algorithm for computing the maximum likelihood (ML) estimates of the model parameters. We then evaluate the finite-sample performance of the developed EM algorithm and the asymptotic properties of the ML estimates through empirical experiments. Finally, we illustrate the obtained results with a real data and display the robustness feature of the estimation procedure developed here.  相似文献   

16.
This paper presents an EM algorithm for maximum likelihood estimation in generalized linear models with overdispersion. The algorithm is initially derived as a form of Gaussian quadrature assuming a normal mixing distribution, but with only slight variation it can be used for a completely unknown mixing distribution, giving a straightforward method for the fully non-parametric ML estimation of this distribution. This is of value because the ML estimates of the GLM parameters may be sensitive to the specification of a parametric form for the mixing distribution. A listing of a GLIM4 algorithm for fitting the overdispersed binomial logit model is given in an appendix.A simple method is given for obtaining correct standard errors for parameter estimates when using the EM algorithm.Several examples are discussed.  相似文献   

17.
A developmental trajectory describes the course of behavior over time. Identifying multiple trajectories within an overall developmental process permits a focus on subgroups of particular interest. We introduce a framework for identifying trajectories by using the Expectation-Maximization (EM) algorithm to fit semiparametric mixtures of logistic distributions to longitudinal binary data. For performance comparison, we consider full maximization algorithms (PROC TRAJ in SAS), standard EM, and two other EM-based algorithms for speeding up convergence. Simulation shows that EM methods produce more accurate parameter estimates. The EM methodology is illustrated with a longitudinal dataset involving adolescents smoking behaviors.  相似文献   

18.
Parametric incomplete data models defined by ordinary differential equations (ODEs) are widely used in biostatistics to describe biological processes accurately. Their parameters are estimated on approximate models, whose regression functions are evaluated by a numerical integration method. Accurate and efficient estimations of these parameters are critical issues. This paper proposes parameter estimation methods involving either a stochastic approximation EM algorithm (SAEM) in the maximum likelihood estimation, or a Gibbs sampler in the Bayesian approach. Both algorithms involve the simulation of non-observed data with conditional distributions using Hastings–Metropolis (H–M) algorithms. A modified H–M algorithm, including an original local linearization scheme to solve the ODEs, is proposed to reduce the computational time significantly. The convergence on the approximate model of all these algorithms is proved. The errors induced by the numerical solving method on the conditional distribution, the likelihood and the posterior distribution are bounded. The Bayesian and maximum likelihood estimation methods are illustrated on a simulated pharmacokinetic nonlinear mixed-effects model defined by an ODE. Simulation results illustrate the ability of these algorithms to provide accurate estimates.  相似文献   

19.
The authors propose a class of procedures for local likelihood estimation from data that are either interval‐censored or that have been aggregated into bins. One such procedure relies on an algorithm that generalizes existing self‐consistency algorithms by introducing kernel smoothing at each step of the iteration. The entire class of procedures yields estimates that are obtained as solutions of fixed point equations. By discretizing and applying numerical integration, the authors use fixed point theory to study convergence of algorithms for the class. Rapid convergence is effected by the implementation of a local EM algorithm as a global Newton iteration. The latter requires an explicit solution of the local likelihood equations which can be found by using the symbolic Newton‐Raphson algorithm, if necessary.  相似文献   

20.
The iteratively reweighting algorithm is one of the widely used algorithm to compute the M-estimates for the location and scatter parameters of a multivariate dataset. If the M estimating equations are the maximum likelihood estimating equations from some scale mixture of normal distributions (e.g. from a multivariate t-distribution), the iteratively reweighting algorithm is identified as an EM algorithm and the convergence behavior of which is well established. However, as Tyler (J. Roy. Statist. Soc. Ser. B 59 (1997) 550) pointed out, little is known about the theoretical convergence properties of the iteratively reweighting algorithms if it cannot be identified as an EM algorithm. In this paper, we consider the convergence behavior of the iteratively reweighting algorithm induced from the M estimating equations which cannot be identified as an EM algorithm. We give some general results on the convergence properties and, we show that convergence behavior of a general iteratively reweighting algorithm induced from the M estimating equations is similar to the convergence behavior of an EM algorithm even if it cannot be identified as an EM algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号