首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proportional hazards model(Cox, 1972) is reviewed for the case of grouped data with one continuously measured covariate. This leads to a logit-rank procedure for tied data which is reduced to the test proposed by O’Brien(1978) and studied by O’Quigley and Prentice(1991) in the absence of ties. The proposed test is then applied to a special ranking method in order to study non-monotonic associations.  相似文献   

2.
This paper surveys commercially available MS-DOS and Microsoft Windows based microcomputer software for survival analysis, especially for Cox proportional hazards regression and parametric survival models. Emphasis is given to functionality, documentation, generality, and flexibility of software. A discussion of the need for software integration is given, which leads to the conclusion that survival analysis software not closely tied to a well-designed package will not meet an analyst's general needs. Some standalone programs are good tools for teaching the theory of some survival analysis procedures, but they may not teach the student good data analysis techniques such as critically examining regression assumptions. We contrast typical software with a general, integrated, modeling framework that is available with S-PLUS.  相似文献   

3.
In 1942 Wolfowitz introduced the term nonparametric into the statistical literature to call attention to the need for extending then-existing statistical theory beyond the customary parametric framework. Subsequently, statistical methods that did not depend on a strictly parametric setup became known as nonparametric methods. This article surveys developments in nonparametrics roughly up to 1960. The suggestion is made that statistics might be better served by eliminating the term nonparametric altogether from the statistical vocabulary.  相似文献   

4.
We consider the additive hazards regression analysis by utilising auxiliary covariate information to improve the efficiency of the statistical inference when the primary covariate is ascertained only for a randomly selected subsample. We construct a martingale-based estimating equation for the regression parameter and establish the asymptotic consistency and normality of the resultant estimator. Simulation study shows that our proposed method can improve the efficiency compared with the estimator which discards the auxiliary covariate information. A real example is also analysed as an illustration.  相似文献   

5.
In clinical trials, it may be of interest taking into account physical and emotional well-being in addition to survival when comparing treatments. Quality-adjusted survival time has the advantage of incorporating information about both survival time and quality-of-life. In this paper, we discuss the estimation of the expected value of the quality-adjusted survival, based on multistate models for the sojourn times in health states. Semiparametric and parametric (with exponential distribution) approaches are considered. A simulation study is presented to evaluate the performance of the proposed estimator and the jackknife resampling method is used to compute bias and variance of the estimator.  相似文献   

6.
7.
A multicollinearity diagnostic is discussed for parametric models fit to censored data. The models considered include the Weibull, exponential and lognormal models as well as the Cox proportional hazards model. This diagnostic is an extension of the diagnostic proposed by Belsley, Kuh, and Welsch (1980). The diagnostic is based on the condition indicies and variance proportions of the variance covariance matrix. Its use and properties are studied through a series of examples. The effect of centering variables included in model is also discussed.  相似文献   

8.
In the evaluation of efficacy of a vaccine to protect against disease caused by finitely many diverse infectious pathogens, it is often important to assess if vaccine protection depends on variations of the exposing pathogen. This problem can be formulated under a competing risks model where the endpoint event is the infection and the cause of failure is the infecting strain type determined after the infection is diagnosed. The strain-specific vaccine efficacy is defined as one minus the cause-specific hazard ratio (vaccine/placebo). This paper develops some simple procedures for testing if the vaccine affords protection against various strains and if and how the strain-specific vaccine efficacy depends on the type of exposing strain, adjusting for covariate effects. The Cox proportional hazards model is used to relate the cause-specific outcomes to explanatory variables. The finite sample properties of proposed tests are studied through simulations and are shown to have good performances. The tests developed are applied to the data collected from an oral cholera vaccine trial.  相似文献   

9.
Abstract.  This paper studies Cox's proportional hazards model under covariate measurement error. Nakamura's [ Biometrika 77 (1990) 127] methodology of corrected log-likelihood will be applied to the so-called Breslow likelihood, which is, in the absence of measurement error, equivalent to partial likelihood. For a general error model with possibly heteroscedastic and non-normal additive measurement error, corrected estimators of the regression parameter as well as of the baseline hazard rate are obtained. The estimators proposed by Nakamura [Biometrics 48 (1992) 829], Kong et al. [ Scand. J. Statist. 25 (1998) 573] and Kong & Gu [ Statistica Sinica 9 (1999) 953] are re-established in the special cases considered there. This sheds new light on these estimators and justifies them as exact corrected score estimators. Finally, the method will be extended to some variants of the Cox model.  相似文献   

10.
Generalized linear models (GLMs) with error-in-covariates are useful in epidemiological research due to the ubiquity of non-normal response variables and inaccurate measurements. The link function in GLMs is chosen by the user depending on the type of response variable, frequently the canonical link function. When covariates are measured with error, incorrect inference can be made, compounded by incorrect choice of link function. In this article we propose three flexible approaches for handling error-in-covariates and estimating an unknown link simultaneously. The first approach uses a fully Bayesian (FB) hierarchical framework, treating the unobserved covariate as a latent variable to be integrated over. The second and third are approximate Bayesian approach which use a Laplace approximation to marginalize the variables measured with error out of the likelihood. Our simulation results show support that the FB approach is often a better choice than the approximate Bayesian approaches for adjusting for measurement error, particularly when the measurement error distribution is misspecified. These approaches are demonstrated on an application with binary response.  相似文献   

11.
Summary. In many biomedical studies, covariates are subject to measurement error. Although it is well known that the regression coefficients estimators can be substantially biased if the measurement error is not accommodated, there has been little study of the effect of covariate measurement error on the estimation of the dependence between bivariate failure times. We show that the dependence parameter estimator in the Clayton–Oakes model can be considerably biased if the measurement error in the covariate is not accommodated. In contrast with the typical bias towards the null for marginal regression coefficients, the dependence parameter can be biased in either direction. We introduce a bias reduction technique for the bivariate survival function in copula models while assuming an additive measurement error model and replicated measurement for the covariates, and we study the large and small sample properties of the dependence parameter estimator proposed.  相似文献   

12.
The proportional hazards regression model of Cox(1972) is widely used in analyzing survival data. We examine several goodness of fit tests for checking the proportionality of hazards in the Cox model with two-sample censored data, and compare the performance of these tests by a simulation study. The strengths and weaknesses of the tests are pointed out. The effects of the extent of random censoring on the size and power are also examined. Results of a simulation study demonstrate that Gill and Schumacher's test is most powerful against a broad range of monotone departures from the proportional hazards assumption, but it may not perform as well fail for alternatives of nonmonotone hazard ratio. For the latter kind of alternatives, Andersen's test may detect patterns of irregular changes in hazards.  相似文献   

13.
Frequently in clinical and epidemiologic studies, the event of interest is recurrent (i.e., can occur more than once per subject). When the events are not of the same type, an analysis which accounts for the fact that events fall into different categories will often be more informative. Often, however, although event times may always be known, information through which events are categorized may potentially be missing. Complete‐case methods (whose application may require, for example, that events be censored when their category cannot be determined) are valid only when event categories are missing completely at random. This assumption is rather restrictive. The authors propose two multiple imputation methods for analyzing multiple‐category recurrent event data under the proportional means/rates model. The use of a proper or improper imputation technique distinguishes the two approaches. Both methods lead to consistent estimation of regression parameters even when the missingness of event categories depends on covariates. The authors derive the asymptotic properties of the estimators and examine their behaviour in finite samples through simulation. They illustrate their approach using data from an international study on dialysis.  相似文献   

14.
Regression parameter estimation in the Cox failure time model is considered when regression variables are subject to measurement error. Assuming that repeat regression vector measurements adhere to a classical measurement model, we can consider an ordinary regression calibration approach in which the unobserved covariates are replaced by an estimate of their conditional expectation given available covariate measurements. However, since the rate of withdrawal from the risk set across the time axis, due to failure or censoring, will typically depend on covariates, we may improve the regression parameter estimator by recalibrating within each risk set. The asymptotic and small sample properties of such a risk set regression calibration estimator are studied. A simple estimator based on a least squares calibration in each risk set appears able to eliminate much of the bias that attends the ordinary regression calibration estimator under extreme measurement error circumstances. Corresponding asymptotic distribution theory is developed, small sample properties are studied using computer simulations and an illustration is provided.  相似文献   

15.
For the Cox proportional hazards model with additive covariate measurement errors, we propose a corrected cumulative baseline hazard estimator that reduces the bias of the na]ve Breslow estimator. We also derive corresponding modified estimators for the hazard functions and the survival functions of individuals with particular covariate values. Using a Monte Carlo technique developed by Lin et al . (1994), we construct confidence bands for such hazard and survival functions.  相似文献   

16.
Abstract.  Case–cohort sampling aims at reducing the data sampling and costs of large cohort studies. It is therefore important to estimate the parameters of interest as efficiently as possible. We present a maximum likelihood estimator (MLE) for a case–cohort study based on the proportional hazards assumption. The estimator shows finite sample properties that improve on those by the Self & Prentice [Ann. Statist. 16 (1988)] estimator. The size of the gain by the MLE varies with the level of the disease incidence and the variability of the relative risk over the considered population. The gain tends to be small when the disease incidence is low. The MLE is found by a simple EM algorithm that is easy to implement. Standard errors are estimated by a profile likelihood approach based on EM-aided differentiation.  相似文献   

17.
Group sequential trialswith time to event end points can be complicated to design. Notonly are there unlimited choices for the number of events requiredat each stage, but for each of these choices, there are unlimitedcombinations of accrual and follow-up at each stage that providethe required events. Methods are presented for determining optimalcombinations of accrual and follow-up for two-stage clinicaltrials with time to event end points. Optimization is based onminimizing the expected total study length as a function of theexpected accrual duration or sample size while providing an appropriateoverall size and power. Optimal values of expected accrual durationand minimum expected total study length are given assuming anexponential proportional hazards model comparing two treatmentgroups. The expected total study length can be substantiallydecreased by including a follow-up period during which accrualis suspended. Conditions that warrant an interim follow-up periodare considered, and the gain in efficiency achieved by includingan interim follow-up period is quantified. The gain in efficiencyshould be weighed against the practical difficulties in implementingsuch designs. An example is given to illustrate the use of thesetechniques in designing a clinical trial to compare two chemotherapyregimens for lung cancer. Practical considerations of includingan interim follow-up period are discussed.  相似文献   

18.
The topic of heterogeneity in the analysis of recurrent event data has received considerable attention recent times. Frailty models are widely employed in such situations as they allow us to model the heterogeneity through common random effect. In this paper, we introduce a shared frailty model for gap time distributions of recurrent events with multiple causes. The parameters of the model are estimated using EM algorithm. An extensive simulation study is used to assess the performance of the method. Finally, we apply the proposed model to a real-life data.  相似文献   

19.
Sample size calculation is a critical issue in clinical trials because a small sample size leads to a biased inference and a large sample size increases the cost. With the development of advanced medical technology, some patients can be cured of certain chronic diseases, and the proportional hazards mixture cure model has been developed to handle survival data with potential cure information. Given the needs of survival trials with potential cure proportions, a corresponding sample size formula based on the log-rank test statistic for binary covariates has been proposed by Wang et al. [25]. However, a sample size formula based on continuous variables has not been developed. Herein, we presented sample size and power calculations for the mixture cure model with continuous variables based on the log-rank method and further modified it by Ewell's method. The proposed approaches were evaluated using simulation studies for synthetic data from exponential and Weibull distributions. A program for calculating necessary sample size for continuous covariates in a mixture cure model was implemented in R.  相似文献   

20.
Joint modelling of event counts and survival times   总被引:2,自引:0,他引:2  
Summary.  In studies of recurrent events, such as epileptic seizures, there can be a large amount of information about a cohort over a period of time, but current methods for these data are often unable to utilize all of the available information. The paper considers data which include post-treatment survival times for individuals experiencing recurring events, as well as a measure of the base-line event rate, in the form of a pre-randomization event count. Standard survival analysis may treat this pre-randomization count as a covariate, but the paper proposes a parametric joint model based on an underlying Poisson process, which will give a more precise estimate of the treatment effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号