首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the multiple linear regression analysis, the ridge regression estimator and the Liu estimator are often used to address multicollinearity. Besides multicollinearity, outliers are also a problem in the multiple linear regression analysis. We propose new biased estimators based on the least trimmed squares (LTS) ridge estimator and the LTS Liu estimator in the case of the presence of both outliers and multicollinearity. For this purpose, a simulation study is conducted in order to see the difference between the robust ridge estimator and the robust Liu estimator in terms of their effectiveness; the mean square error. In our simulations, the behavior of the new biased estimators is examined for types of outliers: X-space outlier, Y-space outlier, and X-and Y-space outlier. The results for a number of different illustrative cases are presented. This paper also provides the results for the robust ridge regression and robust Liu estimators based on a real-life data set combining the problem of multicollinearity and outliers.  相似文献   

2.
In this article, a general class of estimators for the linear regression model affected by outliers and collinearity is introduced and studied in some detail. This class of estimators combines the theory of light, maximum entropy, and robust regression techniques. Our theoretical findings are illustrated through a Monte Carlo simulation study.  相似文献   

3.
This paper presents a comprehensive comparison of well-known partially adaptive estimators (PAEs) in terms of efficiency in estimating regression parameters. The aim is to identify the best estimators of regression parameters when error terms follow from normal, Laplace, Student's t, normal mixture, lognormal and gamma distribution via the Monte Carlo simulation. In the results of the simulation, efficient PAEs are determined in the case of symmetric leptokurtic and skewed leptokurtic regression error data. Additionally, these estimators are also compared in terms of regression applications. Regarding these applications, using certain standard error estimators, it is shown that PAEs can reduce the standard error of the slope parameter estimate relative to ordinary least squares.  相似文献   

4.
ABSTRACT

Advances in statistical computing software have led to a substantial increase in the use of ordinary least squares (OLS) regression models in the engineering and applied statistics communities. Empirical evidence suggests that data sets can routinely have 10% or more outliers in many processes. Unfortunately, these outliers typically will render the OLS parameter estimates useless. The OLS diagnostic quantities and graphical plots can reliably identify a few outliers; however, they significantly lose power with increasing dimension and number of outliers. Although there have been recent advances in the methods that detect multiple outliers, improvements are needed in regression estimators that can fit well in the presence of outliers. We introduce a robust regression estimator that performs well regardless of outlier quantity and configuration. Our studies show that the best available estimators are vulnerable when the outliers are extreme in the regressor space (high leverage). Our proposed compound estimator modifies recently published methods with an improved initial estimate and measure of leverage. Extensive performance evaluations indicate that the proposed estimator performs the best and consistently fits the bulk of the data when outliers are present. The estimator, implemented in standard software, provides researchers and practitioners a tool for the model-building process to protect against the severe impact from multiple outliers.  相似文献   

5.
Multivariate mixture regression models can be used to investigate the relationships between two or more response variables and a set of predictor variables by taking into consideration unobserved population heterogeneity. It is common to take multivariate normal distributions as mixing components, but this mixing model is sensitive to heavy-tailed errors and outliers. Although normal mixture models can approximate any distribution in principle, the number of components needed to account for heavy-tailed distributions can be very large. Mixture regression models based on the multivariate t distributions can be considered as a robust alternative approach. Missing data are inevitable in many situations and parameter estimates could be biased if the missing values are not handled properly. In this paper, we propose a multivariate t mixture regression model with missing information to model heterogeneity in regression function in the presence of outliers and missing values. Along with the robust parameter estimation, our proposed method can be used for (i) visualization of the partial correlation between response variables across latent classes and heterogeneous regressions, and (ii) outlier detection and robust clustering even under the presence of missing values. We also propose a multivariate t mixture regression model using MM-estimation with missing information that is robust to high-leverage outliers. The proposed methodologies are illustrated through simulation studies and real data analysis.  相似文献   

6.
It is developed that non-sample prior information about regression vector-parameter, usually in the form of constraints, improves the risk performance of the ordinary least squares estimator (OLSE) when it is shrunken. However, in practice, it may happen that both multicollinearity and outliers exist simultaneously in the data. In such a situation, the use of robust ridge estimator is suggested to overcome the undesirable effects of the OLSE. In this article, some prior information in the form of constraints is employed to improve the performance of this estimator in the multiple regression model. In this regard, shrinkage ridge robust estimators are defined. Advantages of the proposed estimators over the usual robust ridge estimator are also investigated using Monte-Carlo simulation as well as a real data example.  相似文献   

7.
This article discusses the estimation of the parameter function for a functional linear regression model under heavy-tailed errors' distributions and in the presence of outliers. Standard approaches of reducing the high dimensionality, which is inherent in functional data, are considered. After reducing the functional model to a standard multiple linear regression model, a weighted rank-based procedure is carried out to estimate the regression parameters. A Monte Carlo simulation and a real-world example are used to show the performance of the proposed estimator and a comparison made with the least-squares and least absolute deviation estimators.  相似文献   

8.
The author presents the derivation of formulas for the calculation of critical values of the median function or the general version of it, namely, the quantile functions. In statistics, these functions are used to detect outliers in the data set and to make predictions that are resistant to outliers. Therefore, these formulas can also be used as estimators for these regressions. The fact that these formulas are able to calculate the global optimum gives the exact least median squares or the exact least quantile of squares estimators. The author provides the theoretical background for deriving these estimator formulas and derives the estimator formulas for regression models up to three parameters. In addition, the author provides guides for the derivation of formulas for other models, illustrates the use of these formulas, and emphasizes their properties that are useful for future works. One important conclusion is that each regression model has its own set of formulas.  相似文献   

9.
Abstract. The zero‐inflated Poisson regression model is a special case of finite mixture models that is useful for count data containing many zeros. Typically, maximum likelihood (ML) estimation is used for fitting such models. However, it is well known that the ML estimator is highly sensitive to the presence of outliers and can become unstable when mixture components are poorly separated. In this paper, we propose an alternative robust estimation approach, robust expectation‐solution (RES) estimation. We compare the RES approach with an existing robust approach, minimum Hellinger distance (MHD) estimation. Simulation results indicate that both methods improve on ML when outliers are present and/or when the mixture components are poorly separated. However, the RES approach is more efficient in all the scenarios we considered. In addition, the RES method is shown to yield consistent and asymptotically normal estimators and, in contrast to MHD, can be applied quite generally.  相似文献   

10.
Aalen's nonparametric additive model in which the regression coefficients are assumed to be unspecified functions of time is a flexible alternative to Cox's proportional hazards model when the proportionality assumption is in doubt. In this paper, we incorporate a general linear hypothesis into the estimation of the time‐varying regression coefficients. We combine unrestricted least squares estimators and estimators that are restricted by the linear hypothesis and produce James‐Stein‐type shrinkage estimators of the regression coefficients. We develop the asymptotic joint distribution of such restricted and unrestricted estimators and use this to study the relative performance of the proposed estimators via their integrated asymptotic distributional risks. We conduct Monte Carlo simulations to examine the relative performance of the estimators in terms of their integrated mean square errors. We also compare the performance of the proposed estimators with a recently devised LASSO estimator as well as with ridge‐type estimators both via simulations and data on the survival of primary billiary cirhosis patients.  相似文献   

11.
Abstract

This study concerns semiparametric approaches to estimate discrete multivariate count regression functions. The semiparametric approaches investigated consist of combining discrete multivariate nonparametric kernel and parametric estimations such that (i) a prior knowledge of the conditional distribution of model response may be incorporated and (ii) the bias of the traditional nonparametric kernel regression estimator of Nadaraya-Watson may be reduced. We are precisely interested in combination of the two estimations approaches with some asymptotic properties of the resulting estimators. Asymptotic normality results were showed for nonparametric correction terms of parametric start function of the estimators. The performance of discrete semiparametric multivariate kernel estimators studied is illustrated using simulations and real count data. In addition, diagnostic checks are performed to test the adequacy of the parametric start model to the true discrete regression model. Finally, using discrete semiparametric multivariate kernel estimators provides a bias reduction when the parametric multivariate regression model used as start regression function belongs to a neighborhood of the true regression model.  相似文献   

12.
Abstract

In some clinical, environmental, or economical studies, researchers are interested in a semi-continuous outcome variable which takes the value zero with a discrete probability and has a continuous distribution for the non-zero values. Due to the measuring mechanism, it is not always possible to fully observe some outcomes, and only an upper bound is recorded. We call this left-censored data and observe only the maximum of the outcome and an independent censoring variable, together with an indicator. In this article, we introduce a mixture semi-parametric regression model. We consider a parametric model to investigate the influence of covariates on the discrete probability of the value zero. For the non-zero part of the outcome, a semi-parametric Cox’s regression model is used to study the conditional hazard function. The different parameters in this mixture model are estimated using a likelihood method. Hereby the infinite dimensional baseline hazard function is estimated by a step function. As results, we show the identifiability and the consistency of the estimators for the different parameters in the model. We study the finite sample behaviour of the estimators through a simulation study and illustrate this model on a practical data example.  相似文献   

13.
Numerous estimation techniques for regression models have been proposed. These procedures differ in how sample information is used in the estimation procedure. The efficiency of least squares (OLS) estimators implicity assumes normally distributed residuals and is very sensitive to departures from normality, particularly to "outliers" and thick-tailed distributions. Lead absolute deviation (LAD) estimators are less sensitive to outliers and are optimal for laplace random disturbances, but not for normal errors. This paper reports monte carlo comparisons of OLS,LAD, two robust estimators discussed by huber, three partially adaptiveestimators, newey's generalized method of moments estimator, and an adaptive maximum likelihood estimator based on a normal kernal studied by manski. This paper is the first to compare the relative performance of some adaptive robust estimators (partially adaptive and adaptive procedures) with some common nonadaptive robust estimators. The partially adaptive estimators are based on three flxible parametric distributions for the errors. These include the power exponential (Box-Tiao) and generalized t distributions, as well as a distribution for the errors, which is not necessarily symmetric. The adaptive procedures are "fully iterative" rather than one step estimators. The adaptive estimators have desirable large sample properties, but these properties do not necessarily carry over to the small sample case.

The monte carlo comparisons of the alternative estimators are based on four different specifications for the error distribution: a normal, a mixture of normals (or variance-contaminated normal), a bimodal mixture of normals, and a lognormal. Five hundred samples of 50 are used. The adaptive and partially adaptive estimators perform very well relative to the other estimation procedures considered, and preliminary results suggest that in some important cases they can perform much better than OLS with 50 to 80% reductions in standard errors.

  相似文献   

14.
Numerous estimation techniques for regression models have been proposed. These procedures differ in how sample information is used in the estimation procedure. The efficiency of least squares (OLS) estimators implicity assumes normally distributed residuals and is very sensitive to departures from normality, particularly to "outliers" and thick-tailed distributions. Lead absolute deviation (LAD) estimators are less sensitive to outliers and are optimal for laplace random disturbances, but not for normal errors. This paper reports monte carlo comparisons of OLS,LAD, two robust estimators discussed by huber, three partially adaptiveestimators, newey's generalized method of moments estimator, and an adaptive maximum likelihood estimator based on a normal kernal studied by manski. This paper is the first to compare the relative performance of some adaptive robust estimators (partially adaptive and adaptive procedures) with some common nonadaptive robust estimators. The partially adaptive estimators are based on three flxible parametric distributions for the errors. These include the power exponential (Box-Tiao) and generalized t distributions, as well as a distribution for the errors, which is not necessarily symmetric. The adaptive procedures are "fully iterative" rather than one step estimators. The adaptive estimators have desirable large sample properties, but these properties do not necessarily carry over to the small sample case.

The monte carlo comparisons of the alternative estimators are based on four different specifications for the error distribution: a normal, a mixture of normals (or variance-contaminated normal), a bimodal mixture of normals, and a lognormal. Five hundred samples of 50 are used. The adaptive and partially adaptive estimators perform very well relative to the other estimation procedures considered, and preliminary results suggest that in some important cases they can perform much better than OLS with 50 to 80% reductions in standard errors.  相似文献   

15.
Ordinary least-square (OLS) estimators for a linear model are very sensitive to unusual values in the design space or outliers among y values. Even one single atypical value may have a large effect on the parameter estimates. This article aims to review and describe some available and popular robust techniques, including some recent developed ones, and compare them in terms of breakdown point and efficiency. In addition, we also use a simulation study and a real data application to compare the performance of existing robust methods under different scenarios.  相似文献   

16.
One of the standard variable selection procedures in multiple linear regression is to use a penalisation technique in least‐squares (LS) analysis. In this setting, many different types of penalties have been introduced to achieve variable selection. It is well known that LS analysis is sensitive to outliers, and consequently outliers can present serious problems for the classical variable selection procedures. Since rank‐based procedures have desirable robustness properties compared to LS procedures, we propose a rank‐based adaptive lasso‐type penalised regression estimator and a corresponding variable selection procedure for linear regression models. The proposed estimator and variable selection procedure are robust against outliers in both response and predictor space. Furthermore, since rank regression can yield unstable estimators in the presence of multicollinearity, in order to provide inference that is robust against multicollinearity, we adjust the penalty term in the adaptive lasso function by incorporating the standard errors of the rank estimator. The theoretical properties of the proposed procedures are established and their performances are investigated by means of simulations. Finally, the estimator and variable selection procedure are applied to the Plasma Beta‐Carotene Level data set.  相似文献   

17.
This paper considers a non linear quantile model with change-points. The quantile estimation method, which as a particular case includes median model, is more robust with respect to other traditional methods when model errors contain outliers. Under relatively weak assumptions, the convergence rate and asymptotic distribution of change-point and of regression parameter estimators are obtained. Numerical study by Monte Carlo simulations shows the performance of the proposed method for non linear model with change-points.  相似文献   

18.
Nonparametric models with jump points have been considered by many researchers. However, most existing methods based on least squares or likelihood are sensitive when there are outliers or the error distribution is heavy tailed. In this article, a local piecewise-modal method is proposed to estimate the regression function with jump points in nonparametric models, and a piecewise-modal EM algorithm is introduced to estimate the proposed estimator. Under some regular conditions, the large-sample theory is established for the proposed estimators. Several simulations are presented to evaluate the performances of the proposed method, which shows that the proposed estimator is more efficient than the local piecewise-polynomial regression estimator in the presence of outliers or heavy tail error distribution. What is more, the proposed procedure is asymptotically equivalent to the local piecewise-polynomial regression estimator under the assumption that the error distribution is a Gaussian distribution. The proposed method is further illustrated via the sea-level pressures.  相似文献   

19.
The author presents a robust F-test for comparing nested linear models. It is suggested that the approach will be attractive to practitioners because it is based on the familiar F-statistic and corresponds to the common practice of reporting F-statistics after removing obvious outliers. It is calibrated in terms of a real parameter that can be directly interpreted as the willingness of the data analyst to remove observations, and the sensitivity of the F-statistic to this parameter is easily examined. The procedure is evaluated with a simulation study where a scale mixture distribution is used to generate outliers. The procedure is also applied to some data where the occurrence of an outlier is confounded with the significance of a regression term. This provides a comparison of two competing models for the data: one removing an outlier and the other including an additional regression term instead.  相似文献   

20.
In comparison to other experimental studies, multicollinearity appears frequently in mixture experiments, a special study area of response surface methodology, due to the constraints on the components composing the mixture. In the analysis of mixture experiments by using a special generalized linear model, logistic regression model, multicollinearity causes precision problems in the maximum-likelihood logistic regression estimate. Therefore, effects due to multicollinearity can be reduced to a certain extent by using alternative approaches. One of these approaches is to use biased estimators for the estimation of the coefficients. In this paper, we suggest the use of logistic ridge regression (RR) estimator in the cases where there is multicollinearity during the analysis of mixture experiments using logistic regression. Also, for the selection of the biasing parameter, we use fraction of design space plots for evaluating the effect of the logistic RR estimator with respect to the scaled mean squared error of prediction. The suggested graphical approaches are illustrated on the tumor incidence data set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号