首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A popular wavelet method for estimating jumps in functions is through the use of the translation-invariant (TI) estimator. The TI estimator addresses a particular problem, the susceptibility of the wavelet estimates to the location of the features in a function with respect to the support of the wavelet basis functions. The TI estimator reduces this reliance by cycling the data through a set of shifts, thus changing the relation between the wavelet support and the jump location. However, a drawback of the TI estimator is that it includes every shifted analysis in the reconstruction, even those that may reduce, rather than improve, the effectiveness of the method. In this paper, we propose a method that modifies the TI estimator to improve the jump reconstruction in terms of the mean squared errors of the reconstructions and visual performance. Information from the set of shifted data sets is used to mimic the performance of an oracle which knows exactly which are the best TI shifts to retain in the reconstruction. The TI estimate is a special case of the proposed method. A simulation study comparing this proposed method to the existing wavelet estimators and the oracle is provided.  相似文献   

2.
The authors study a varying‐coefficient regression model in which some of the covariates are measured with additive errors. They find that the usual local linear estimator (LLE) of the coefficient functions is biased and that the usual correction for attenuation fails to work. They propose a corrected LLE and show that it is consistent and asymptotically normal, and they also construct a consistent estimator for the model error variance. They then extend the generalized likelihood technique to develop a goodness of fit test for the model. They evaluate these various procedures through simulation studies and use them to analyze data from the Framingham Heart Study.  相似文献   

3.
Estimators of the intercept parameter of a simple linear regression model involves the slope estimator. In this article, we consider the estimation of the intercept parameters of two linear regression models with normal errors, when it is a priori suspected that the two regression lines are parallel, but in doubt. We also introduce a coefficient of distrust as a measure of degree of lack of trust on the uncertain prior information regarding the equality of two slopes. Three different estimators of the intercept parameters are defined by using the sample data, the non sample uncertain prior information, an appropriate test statistic, and the coefficient of distrust. The relative performances of the unrestricted, shrinkage restricted and shrinkage preliminary test estimators are investigated based on the analyses of the bias and risk functions under quadratic loss. If the prior information is precise and the coefficient of distrust is small, the shrinkage preliminary test estimator overperforms the other estimators. An example based on a medical study is used to illustrate the method.  相似文献   

4.
Abstract

The purpose of this paper is twofold. First, we investigate estimations in varying-coefficient partially linear errors-in-variables models with covariates missing at random. However, the estimators are often biased due to the existence of measurement errors, the bias-corrected profile least-squares estimator and local liner estimators for unknown parametric and coefficient functions are obtained based on inverse probability weighted method. The asymptotic properties of the proposed estimators both for the parameter and nonparametric parts are established. Second, we study asymptotic distributions of an empirical log-likelihood ratio statistic and maximum empirical likelihood estimator for the unknown parameter. Based on this, more accurate confidence regions of the unknown parameter can be constructed. The methods are examined through simulation studies and illustrated by a real data analysis.  相似文献   

5.
A wavelet method is proposed that reduces function estimation error and provides smooth reconstructions, while still estimating jumps in the function well. It is based on analyzing multiple dilated versions of the sampled function. In simulation studies, the estimator exhibits low mean squared errors without sacrificing smoothness or jump detection ability when compared to other wavelet methods.  相似文献   

6.
The methods of estimation of nonparametric regression function are quite common in statistical application. In this paper, the new Bayesian wavelet thresholding estimation is considered. The new mixture prior distributions for the estimation of nonparametric regression function by applying wavelet transformation are investigated. The reversible jump algorithm to obtain the appropriate prior distributions and value of thresholding is used. The performance of the proposed estimator is assessed with simulated data from well-known test functions by comparing the convergence rate of the proposed estimator with respect to another by evaluating the average mean square error and standard deviations. Finally by applying the developed method, density function of galaxy data is estimated.  相似文献   

7.
Classical nondecimated wavelet transforms are attractive for many applications. When the data comes from complex or irregular designs, the use of second generation wavelets in nonparametric regression has proved superior to that of classical wavelets. However, the construction of a nondecimated second generation wavelet transform is not obvious. In this paper we propose a new ‘nondecimated’ lifting transform, based on the lifting algorithm which removes one coefficient at a time, and explore its behavior. Our approach also allows for embedding adaptivity in the transform, i.e. wavelet functions can be constructed such that their smoothness adjusts to the local properties of the signal. We address the problem of nonparametric regression and propose an (averaged) estimator obtained by using our nondecimated lifting technique teamed with empirical Bayes shrinkage. Simulations show that our proposed method has higher performance than competing techniques able to work on irregular data. Our construction also opens avenues for generating a ‘best’ representation, which we shall explore.  相似文献   

8.
Abstract.  This paper proposes a new wavelet-based method for deconvolving a density. The estimator combines the ideas of non-linear wavelet thresholding with periodized Meyer wavelets and estimation by information projection. It is guaranteed to be in the class of density functions, in particular it is positive everywhere by construction. The asymptotic optimality of the estimator is established in terms of the rate of convergence of the Kullback–Leibler discrepancy over Besov classes. Finite sample properties are investigated in detail, and show the excellent empirical performance of the estimator, compared with other recently introduced estimators.  相似文献   

9.
In this article, we provide some robust estimation of moments of the random effects and the errors in dynamic panel data models with potential intercorrelation. By differencing the residuals over the individual and time indies, we modify the popularly used Arellano-Bond GMM estimator of the parameter coefficient and study its asymptotic properties. Based on the modified parameter estimator, we construct, respectively, some moment estimators of the random effects and the errors with no affecting each other. Their asymptotic normalities are obtained under some mild conditions. The finite sample properties are investigated by a small Monte Carlo simulation experiment.  相似文献   

10.
In this article, a generalized restricted difference-based ridge estimator is defined for the vector parameter in a partial linear model when the errors are dependent. It is suspected that some additional linear constraints may hold on to the whole parameter space. The estimator is a generalization of the well-known restricted least-squares estimator and is confined to the (affine) subspace which is generated by the restrictions. The risk functions of the proposed estimators are derived under balanced loss function. Finally, the performance of the new estimators is evaluated by a simulated data set.  相似文献   

11.
Abstract.  The paper proposes a method of deconvolution in a periodic setting which combines two important ideas, the fast wavelet and Fourier transform-based estimation procedure of Johnstone et al . [ J. Roy. Statist. Soc. Ser. B 66 (2004) 547] and the multichannel system technique proposed by Casey and Walnut [ SIAM Rev . 36 (1994) 537]. An unknown function is estimated by a wavelet series where the empirical wavelet coefficients are filtered in an adapting non-linear fashion. It is shown theoretically that the estimator achieves optimal convergence rate in a wide range of Besov spaces. The procedure allows to reduce the ill-posedness of the problem especially in the case of non-smooth blurring functions such as boxcar functions: it is proved that additions of extra channels improve convergence rate of the estimator. Theoretical study is supplemented by an extensive set of small-sample simulation experiments demonstrating high-quality performance of the proposed method.  相似文献   

12.
This paper considers the problem of variance estimation for sparse ultra-high dimensional varying coefficient models. We first use B-spline to approximate the coefficient functions, and discuss the asymptotic behavior of a naive two-stage estimator of error variance. We also reveal that this naive estimator may significantly underestimate the error variance due to the spurious correlations, which are even higher for nonparametric models than linear models. This prompts us to propose an accurate estimator of the error variance by effectively integrating the sure independence screening and the refitted cross-validation techniques. The consistency and the asymptotic normality of the resulting estimator are established under some regularity conditions. The simulation studies are carried out to assess the finite sample performance of the proposed methods.  相似文献   

13.
There is a tendency for the true variability of feasible GLS estimators to be understated by asymptotic standard errors. For estimation of SUR models, this tendency becomes more severe in large equation systems when estimation of the error covariance matrix, C, becomes problematic. We explore a number of potential solutions involving the use of improved estimators for the disturbance covariance matrix and bootstrapping. In particular, Ullah and Racine (1992) have recently introduced a new class of estimators for SUR models that use nonparametric kernel density estimation techniques. The proposed estimators have the same structure as the feasible GLS estimator of Zellner (1962) differing only in the choice of estimator for C. Ullah and Racine (1992) prove that their nonparametric density estimator of C can be expressed as Zellner's original estimator plus a positive definite matrix that depends on the smoothing parameter chosen for the density estimation. It is this structure of the estimator that most interests us as it has the potential to be especially useful in large equation systems.

Atkinson and Wilson (1992) investigated the bias in the conventional and bootstrap estimators of coefficient standard errors in SUR models. They demonstrated that under certain conditions the former were superior, but they caution that neither estimator uniformly dominated and hence bootstrapping provides little improvement in the estimation of standard errors for the regression coefficients. Rilstone and Veal1 (1996) argue that an important qualification needs to be made to this somewhat negative conclusion. They demonstrated that bootstrapping can result in improvements in inferences if the procedures are applied to the t-ratios rather than to the standard errors. These issues are explored for the case of large equation systems and when bootstrapping is combined with improved covariance estimation.  相似文献   

14.
The standard technique for estimating the variance of a linear regression coefficient is unbiased when the random errors of the observational units are independent and identically distributed. When the unit variances are not all equal, however, as is often the case in practice, this method can be biased. An unbiased variance estimator given uncorrelated, but not necessarily homoscedastic, unit errors is introduced here and compared to the conventional technique using real data.  相似文献   

15.
In this article, we propose a novel approach to fit a functional linear regression in which both the response and the predictor are functions. We consider the case where the response and the predictor processes are both sparsely sampled at random time points and are contaminated with random errors. In addition, the random times are allowed to be different for the measurements of the predictor and the response functions. The aforementioned situation often occurs in longitudinal data settings. To estimate the covariance and the cross‐covariance functions, we use a regularization method over a reproducing kernel Hilbert space. The estimate of the cross‐covariance function is used to obtain estimates of the regression coefficient function and of the functional singular components. We derive the convergence rates of the proposed cross‐covariance, the regression coefficient, and the singular component function estimators. Furthermore, we show that, under some regularity conditions, the estimator of the coefficient function has a minimax optimal rate. We conduct a simulation study and demonstrate merits of the proposed method by comparing it to some other existing methods in the literature. We illustrate the method by an example of an application to a real‐world air quality dataset. The Canadian Journal of Statistics 47: 524–559; 2019 © 2019 Statistical Society of Canada  相似文献   

16.
The estimation of a multivariate function from a stationary m-dependent process is investigated, with a special focus on the case where m is large or unbounded. We develop an adaptive estimator based on wavelet methods. Under flexible assumptions on the nonparametric model, we prove the good performances of our estimator by determining sharp rates of convergence under two kinds of errors: the pointwise mean squared error and the mean integrated squared error. We illustrate our theoretical result by considering the multivariate density estimation problem, the derivatives density estimation problem, the density estimation problem in a GARCH-type model and the multivariate regression function estimation problem. The performance of proposed estimator has been shown by a numerical study for a simulated and real data sets.  相似文献   

17.
For the Cox proportional hazards model with additive covariate measurement errors, we propose a corrected cumulative baseline hazard estimator that reduces the bias of the na]ve Breslow estimator. We also derive corresponding modified estimators for the hazard functions and the survival functions of individuals with particular covariate values. Using a Monte Carlo technique developed by Lin et al . (1994), we construct confidence bands for such hazard and survival functions.  相似文献   

18.
This paper focuses on the variable selection for semiparametric varying coefficient partially linear model when the covariates are measured with additive errors and the response is missing. An adaptive lasso estimator and the smoothly clipped absolute deviation estimator as a comparison for the parameters are proposed. With the proper selection of regularization parameter, the sampling properties including the consistency of the two procedures and the oracle properties are established. Furthermore, the algorithms and corresponding standard error formulas are discussed. A simulation study is carried out to assess the finite sample performance of the proposed methods.  相似文献   

19.
We consider the estimation of a two dimensional continuous–discrete density function. A new methodology based on wavelets is proposed. We construct a linear wavelet estimator and a non-linear wavelet estimator based on a term-by-term thresholding. Their rates of convergence are established under the mean integrated squared error over Besov balls. In particular, we prove that our adaptive wavelet estimator attains a fast rate of convergence. A simulation study illustrates the usefulness of the proposed estimators.  相似文献   

20.
We consider some estimation and distribution problems encountered in a two way analysis of variance model with only one observation per cell, errors correlated in one level, and the variances are not necessarily equal. The independence criteria for the row and interaction mean sum of squares and distribution of the maximum likelihood estimator of the correlation coefficient are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号