首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When an existing risk prediction model is not sufficiently predictive, additional variables are sought for inclusion in the model. This paper addresses study designs to evaluate the improvement in prediction performance that is gained by adding a new predictor to a risk prediction model. We consider studies that measure the new predictor in a case–control subset of the study cohort, a practice that is common in biomarker research. We ask if matching controls to cases in regards to baseline predictors improves efficiency. A variety of measures of prediction performance are studied. We find through simulation studies that matching improves the efficiency with which most measures are estimated, but can reduce efficiency for some. Efficiency gains are less when more controls per case are included in the study. A method that models the distribution of the new predictor in controls appears to improve estimation efficiency considerably.  相似文献   

2.
Two-phase case–control studies cope with the problem of confounding by obtaining required additional information for a subset (phase 2) of all individuals (phase 1). Nowadays, studies with rich phase 1 data are available where only few unmeasured confounders need to be obtained in phase 2. The extended conditional maximum likelihood (ECML) approach in two-phase logistic regression is a novel method to analyse such data. Alternatively, two-phase case–control studies can be analysed by multiple imputation (MI), where phase 2 information for individuals included in phase 1 is treated as missing. We conducted a simulation of two-phase studies, where we compared the performance of ECML and MI in typical scenarios with rich phase 1. Regarding exposure effect, MI was less biased and more precise than ECML. Furthermore, ECML was sensitive against misspecification of the participation model. We therefore recommend MI to analyse two-phase case–control studies in situations with rich phase 1 data.  相似文献   

3.
4.
We propose penalized minimum φ-divergence estimator for parameter estimation and variable selection in logistic regression. Using an appropriate penalty function, we show that penalized φ-divergence estimator has oracle property. With probability tending to 1, penalized φ-divergence estimator identifies the true model and estimates nonzero coefficients as efficiently as if the sparsity of the true model was known in advance. The advantage of penalized φ-divergence estimator is that it produces estimates of nonzero parameters efficiently than penalized maximum likelihood estimator when sample size is small and is equivalent to it for large one. Numerical simulations confirm our findings.  相似文献   

5.
6.
In this paper we present a study of Stein-type estimators for the unknown parameters in logistic regression models when it is suspected that the parameters may be restricted to a subspace of the parameter space. The Stein-type estimators studied are based on the minimum phi-divergence estimator instead on the maximum likelihood estimator as well as on phi-divergence test statistics.  相似文献   

7.
8.
Gérard Collomb 《Statistics》2013,47(2):309-324
We attempt to give a complete list of references in non parametric regression estimation (including non parametric time series analysis), with a brief introduction of these works according a classification taking the diversity of problems or methods into account.  相似文献   

9.
10.
We consider the issue of assessing influence of observations in the class of Birnbaum–Saunders nonlinear regression models, which is useful in lifetime data analysis. Our results generalize those in Galea et al. [8 Galea, M., Leiva, V. and Paula, G. A. 2004. Influence diagnostics in log-Birnbaum–Saunders regression models. J. Appl. Stat., 31: 10491064. [Taylor & Francis Online], [Web of Science ®] [Google Scholar]] which are confined to Birnbaum–Saunders linear regression models. Some influence methods, such as the local influence, total local influence of an individual and generalized leverage are discussed. Additionally, the normal curvatures for studying local influence are derived under some perturbation schemes. We also give an application to a real fatigue data set.  相似文献   

11.
The Fay–Herriot model, a popular approach in small area estimation, uses relevant covariates to improve the inference for quantities of interest in small sub-populations. The conditional Akaike information (AI) (Vaida and Blanchard, 2005 [23]) in linear mixed-effect models with i.i.d. errors can be extended to the Fay–Herriot model for measuring prediction performance. In this paper, we derive the unbiased conditional AIC (cAIC) for three popular approaches to fitting the Fay–Herriot model. The three cAIC have closed forms and are convenient to implement. We conduct a simulation study to demonstrate their accuracy in estimating the conditional AI and superior performance in model selection than the classic AIC. We also apply the cAIC in estimating county-level prevalence rates of obesity for working-age Hispanic females in California.  相似文献   

12.
13.
This paper presents some considerations about the numerical procedures for generating D–optimal design in a finite design space. The influence of starting procedures and the finite set of points on the design efficiency is considered. Some modifications of the existing procedures for D–optimal designs generation are described. It is shown that for large number of factors the sequential procedures are more appropriate than the nonsequential ones  相似文献   

14.
In this paper, we propose a method to assess influence in skew-Birnbaum–Saunders regression models, which are an extension based on the skew-normal distribution of the usual Birnbaum–Saunders (BS) regression model. An interesting characteristic that the new regression model has is the capacity of predicting extreme percentiles, which is not possible with the BS model. In addition, since the observed likelihood function associated with the new regression model is more complex than that from the usual model, we facilitate the parameter estimation using a type-EM algorithm. Moreover, we employ influence diagnostic tools that considers this algorithm. Finally, a numerical illustration includes a brief simulation study and an analysis of real data in order to show the proposed methodology.  相似文献   

15.
16.
ABSTRACT

ARMA–GARCH models are widely used to model the conditional mean and conditional variance dynamics of returns on risky assets. Empirical results suggest heavy-tailed innovations with positive extreme value index for these models. Hence, one may use extreme value theory to estimate extreme quantiles of residuals. Using weak convergence of the weighted sequential tail empirical process of the residuals, we derive the limiting distribution of extreme conditional Value-at-Risk (CVaR) and conditional expected shortfall (CES) estimates for a wide range of extreme value index estimators. To construct confidence intervals, we propose to use self-normalization. This leads to improved coverage vis-à-vis the normal approximation, while delivering slightly wider confidence intervals. A data-driven choice of the number of upper order statistics in the estimation is suggested and shown to work well in simulations. An application to stock index returns documents the improvements of CVaR and CES forecasts.  相似文献   

17.
Row–column designs for two-level factorial experiments are constructed to estimate all the main effects. We give the interactions for row and column blockings. Based on these blockings, independent treatment combinations are proposed to establish the whole design so that practitioners can easily apply it to their experiments. Some examples are given for illustrations. The estimation of two-factor interactions in these designs is discussed.  相似文献   

18.
19.
Parametric and semiparametric mixture models have been widely used in applications from many areas, and it is often of interest to test the homogeneity in these models. However, hypothesis testing is non standard due to the fact that several regularity conditions do not hold under the null hypothesis. We consider a semiparametric mixture case–control model, in the sense that the density ratio of two distributions is assumed to be of an exponential form, while the baseline density is unspecified. This model was first considered by Qin and Liang (2011 Qin, J., Liang, K.Y. (2011). Hypothesis testing in a mixture case–control model. Biometrics 67(1):182198.[Crossref], [PubMed], [Web of Science ®] [Google Scholar], biometrics), and they proposed a modified score statistic for testing homogeneity. In this article, we consider alternative testing procedures based on supremum statistics, which could improve power against certain types of alternatives. We demonstrate the connection and comparison among the proposed and existing approaches. In addition, we provide a unified theoretical justification of the supremum test and other existing test statistics from an empirical likelihood perspective. The finite-sample performance of the supremum test statistics was evaluated in simulation studies.  相似文献   

20.
The usual practice in using a Bayesian control chart to monitor a process is done by taking samples from the process with fixed sampling intervals. Recent studies on traditional control charts have shown that variable sampling interval (VSI) scheme compared to classical scheme (fixed ratio sampling, FRS) helps practitioners to detect process shifts more quickly. In this paper, the effectiveness of VSI scheme on performance of Bayesian control chart has been studied, based on economic (ED) and economic–statistical designs (ESD). Monte Carlo method and artificial bee colony algorithm have been utilized to obtain optimal design parameters of Bayesian control chart (sample size, sampling intervals, warning limit and control limit) since the statistic of this approach does not have any specified distribution. Finally, VSI Bayesian control chart has been compared to FRS Bayesian and VSI X-bar approaches based on ED and ESD, separately. According to the results, it has been found that the performance of VSI Bayesian scheme is better than FRS Bayesian and VSI X-bar approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号