首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper develops a smoothed empirical likelihood (SEL)-based method to construct confidence intervals for quantile regression parameters with auxiliary information. First, we define the SEL ratio and show that it follows a Chi-square distribution. We then construct confidence intervals according to this ratio. Finally, Monte Carlo experiments are employed to evaluate the proposed method.  相似文献   

2.
Tianqing Liu 《Statistics》2016,50(1):89-113
This paper proposes an empirical likelihood-based weighted (ELW) quantile regression approach for estimating the conditional quantiles when some covariates are missing at random. The proposed ELW estimator is computationally simple and achieves semiparametric efficiency if the probability of missingness is correctly specified. The limiting covariance matrix of the ELW estimator can be estimated by a resampling technique, which does not involve nonparametric density estimation or numerical derivatives. Simulation results show that the ELW method works remarkably well in finite samples. A real data example is used to illustrate the proposed ELW method.  相似文献   

3.
In this paper, we propose an empirical likelihood-based weighted estimator of regression parameter in quantile regression model with non ignorable missing covariates. The proposed estimator is computationally simple and achieves semiparametric efficiency if the probability of missingness on the fully observed variables is correctly specified. The efficiency gain of the proposed estimator over the complete-case-analysis estimator is quantified theoretically and illustrated via simulation and a real data application.  相似文献   

4.
Quantitle regression (QR) is a popular approach to estimate functional relations between variables for all portions of a probability distribution. Parameter estimation in QR with missing data is one of the most challenging issues in statistics. Regression quantiles can be substantially biased when observations are subject to missingness. We study several inverse probability weighting (IPW) estimators for parameters in QR when covariates or responses are subject to missing not at random. Maximum likelihood and semiparametric likelihood methods are employed to estimate the respondent probability function. To achieve nice efficiency properties, we develop an empirical likelihood (EL) approach to QR with the auxiliary information from the calibration constraints. The proposed methods are less sensitive to misspecified missing mechanisms. Asymptotic properties of the proposed IPW estimators are shown under general settings. The efficiency gain of EL-based IPW estimator is quantified theoretically. Simulation studies and a data set on the work limitation of injured workers from Canada are used to illustrated our proposed methodologies.  相似文献   

5.
This paper develops a novel weighted composite quantile regression (CQR) method for estimation of a linear model when some covariates are missing at random and the probability for missingness mechanism can be modelled parametrically. By incorporating the unbiased estimating equations of incomplete data into empirical likelihood (EL), we obtain the EL-based weights, and then re-adjust the inverse probability weighted CQR for estimating the vector of regression coefficients. Theoretical results show that the proposed method can achieve semiparametric efficiency if the selection probability function is correctly specified, therefore the EL weighted CQR is more efficient than the inverse probability weighted CQR. Besides, our algorithm is computationally simple and easy to implement. Simulation studies are conducted to examine the finite sample performance of the proposed procedures. Finally, we apply the new method to analyse the US news College data.  相似文献   

6.
There is much literature on statistical inference for distribution under missing data, but surprisingly very little previous attention has been paid to missing data in the context of estimating distribution with auxiliary information. In this article, the auxiliary information with missing data is proposed. We use Zhou, Wan and Wang's method (2008) to mitigate the effects of missing data through a reformulation of the estimating equations, imputed through a semi-parametric procedure. Whence we can estimate distribution and the τth quantile of the distribution by taking auxiliary information into account. Asymptotic properties of the distribution estimator and corresponding sample quantile are derived and analyzed. The distribution estimators based on our method are found to significantly outperform the corresponding estimators without auxiliary information. Some simulation studies are conducted to illustrate the finite sample performance of the proposed estimators.  相似文献   

7.
Xu Guo  Yiping Yang  Wangli Xu 《Statistics》2015,49(3):588-601
In this paper, we investigate the empirical-likelihood-based inference for the construction of confidence intervals and regions of the parameters of interest in single index models with missing covariates at random. An augmented inverse probability weighted-type empirical likelihood ratio for the parameters of interest is defined such that this ratio is asymptotically standard chi-squared. Our approach is to directly calibrate the empirical log-likelihood ratio, and does not need multiplication by an adjustment factor for the original ratio. Our bias-corrected empirical likelihood is self-scale invariant and no plug-in estimator for the limiting variance is needed. Some simulation studies are carried out to assess the performance of our proposed method.  相似文献   

8.
This paper studies penalized quantile regression for dynamic panel data with fixed effects, where the penalty involves l1 shrinkage of the fixed effects. Using extensive Monte Carlo simulations, we present evidence that the penalty term reduces the dynamic panel bias and increases the efficiency of the estimators. The underlying intuition is that there is no need to use instrumental variables for the lagged dependent variable in the dynamic panel data model without fixed effects. This provides an additional use for the shrinkage models, other than model selection and efficiency gains. We propose a Bayesian information criterion based estimator for the parameter that controls the degree of shrinkage. We illustrate the usefulness of the novel econometric technique by estimating a “target leverage” model that includes a speed of capital structure adjustment. Using the proposed penalized quantile regression model the estimates of the adjustment speeds lie between 3% and 44% across the quantiles, showing strong evidence that there is substantial heterogeneity in the speed of adjustment among firms.  相似文献   

9.
Suppose that we have a linear regression model Y=Xβ+ν0(X)εY=Xβ+ν0(X)ε with random error εε, where X is a random design variable and is observed completely, and Y is the response variable and some Y-values are missing at random (MAR). In this paper, based on the ‘complete’ data set for Y after inverse probability weighted imputation, we construct empirical likelihood statistics on EY   and ββ which have the χ2χ2-type limiting distributions under some new conditions compared with Xue (2009). Our results broaden the applicable scope of the approach combined with Xue (2009).  相似文献   

10.
Logistic regression plays an important role in many fields. In practice, we often encounter missing covariates in different applied sectors, particularly in biomedical sciences. Ibrahim (1990) proposed a method to handle missing covariates in generalized linear model (GLM) setup. It is well known that logistic regression estimates using small or medium sized missing data are biased. Considering the missing data that are missing at random, in this paper we have reduced the bias by two methods; first we have derived a closed form bias expression using Cox and Snell (1968), and second we have used likelihood based modification similar to Firth (1993). Here we have analytically shown that the Firth type likelihood modification in Ibrahim led to the second order bias reduction. The proposed methods are simple to apply on an existing method, need no analytical work, with the exception of a little change in the optimization function. We have carried out extensive simulation studies comparing the methods, and our simulation results are also supported by a real world data.  相似文献   

11.
Randomized response is an interview technique designed to eliminate response bias when sensitive questions are asked. In this paper, we present a logistic regression model on randomized response data when the covariates on some subjects are missing at random. In particular, we propose Horvitz and Thompson (1952)-type weighted estimators by using different estimates of the selection probabilities. We present large sample theory for the proposed estimators and show that they are more efficient than the estimator using the true selection probabilities. Simulation results support theoretical analysis. We also illustrate the approach using data from a survey of cable TV.  相似文献   

12.
Abstract

In this article, we study the variable selection and estimation for linear regression models with missing covariates. The proposed estimation method is almost as efficient as the popular least-squares-based estimation method for normal random errors and empirically shown to be much more efficient and robust with respect to heavy tailed errors or outliers in the responses and covariates. To achieve sparsity, a variable selection procedure based on SCAD is proposed to conduct estimation and variable selection simultaneously. The procedure is shown to possess the oracle property. To deal with the covariates missing, we consider the inverse probability weighted estimators for the linear model when the selection probability is known or unknown. It is shown that the estimator by using estimated selection probability has a smaller asymptotic variance than that with true selection probability, thus is more efficient. Therefore, the important Horvitz-Thompson property is verified for penalized rank estimator with the covariates missing in the linear model. Some numerical examples are provided to demonstrate the performance of the estimators.  相似文献   

13.
In this paper, we develop Bayesian methodology and computational algorithms for variable subset selection in Cox proportional hazards models with missing covariate data. A new joint semi-conjugate prior for the piecewise exponential model is proposed in the presence of missing covariates and its properties are examined. The covariates are assumed to be missing at random (MAR). Under this new prior, a version of the Deviance Information Criterion (DIC) is proposed for Bayesian variable subset selection in the presence of missing covariates. Monte Carlo methods are developed for computing the DICs for all possible subset models in the model space. A Bone Marrow Transplant (BMT) dataset is used to illustrate the proposed methodology.  相似文献   

14.
Various methods have been suggested in the literature to handle a missing covariate in the presence of surrogate covariates. These methods belong to one of two paradigms. In the imputation paradigm, Pepe and Fleming (1991) and Reilly and Pepe (1995) suggested filling in missing covariates using the empirical distribution of the covariate obtained from the observed data. We can proceed one step further by imputing the missing covariate using nonparametric maximum likelihood estimates (NPMLE) of the density of the covariate. Recently Murphy and Van der Vaart (1998a) showed that such an approach yields a consistent, asymptotically normal, and semiparametric efficient estimate for the logistic regression coefficient. In the weighting paradigm, Zhao and Lipsitz (1992) suggested an estimating function using completely observed records after weighting inversely by the probability of observation. An extension of this weighting approach designed to achieve semiparametric efficient bound is considered by Robins, Hsieh and Newey (RHN) (1995). The two ends of each paradigm (NPMLE and RHN) attain the efficiency bound and are asymptotically equivalent. However, both require a substantial amount of computation. A question arises whether and when, in practical situations, this extensive computation is worthwhile. In this paper we investigate the performance of single and multiple imputation estimates, weighting estimates, semiparametric efficient estimates, and two new imputation estimates. Simulation studies suggest that the sample size should be substantially large (e.g. n=2000) for NPMLE and RHN to be more efficient than simpler imputation estimates. When the sample size is moderately large (n≤ 1500), simpler imputation estimates have as small a variance as semiparametric efficient estimates.  相似文献   

15.
In this article, we consider statistical inference for longitudinal partial linear models when the response variable is sometimes missing with missingness probability depending on the covariate that is measured with error. A generalized empirical likelihood (GEL) method is proposed by combining correction attenuation and quadratic inference functions. The method that takes into consideration the correlation within groups is used to estimate the regression coefficients. Furthermore, residual-adjusted empirical likelihood (EL) is employed for estimating the baseline function so that undersmoothing is avoided. The empirical log-likelihood ratios are proven to be asymptotically Chi-squared, and the corresponding confidence regions for the parameters of interest are then constructed. Compared with methods based on NAs, the GEL does not require consistent estimators for the asymptotic variance and bias. The numerical study is conducted to compare the performance of the EL and the normal approximation-based method, and a real example is analysed.  相似文献   

16.
In this paper, a nonlinear model with response variables missing at random is studied. In order to improve the coverage accuracy for model parameters, the empirical likelihood (EL) ratio method is considered. On the complete data, the EL statistic for the parameters and its approximation have a χ2 asymptotic distribution. When the responses are reconstituted using a semi-parametric method, the empirical log-likelihood on the response variables associated with the imputed data is also asymptotically χ2. The Wilks theorem for EL on the parameters, based on reconstituted data, is also satisfied. These results can be used to construct the confidence region for the model parameters and the response variables. It is shown via Monte Carlo simulations that the EL methods outperform the normal approximation-based method in terms of coverage probability for the unknown parameter, including on the reconstituted data. The advantages of the proposed method are exemplified on real data.  相似文献   

17.
In this article, we propose a resampling method based on perturbing the estimating functions to compute the asymptotic variances of quantile regression estimators under missing at random condition. We prove that the conditional distributions of the resampling estimators are asymptotically equivalent to the distributions of quantile regression estimators. Our method can deal with complex situations, where the response and part of covariates are missing. Numerical results based on simulated and real data are provided under several designs.  相似文献   

18.
Missing covariate data are common in biomedical studies. In this article, by using the non parametric kernel regression technique, a new imputation approach is developed for the Cox-proportional hazard regression model with missing covariates. This method achieves the same efficiency as the fully augmented weighted estimators (Qi et al. 2005. Journal of the American Statistical Association, 100:1250) and has a simpler form. The asymptotic properties of the proposed estimator are derived and analyzed. The comparisons between the proposed imputation method and several other existing methods are conducted via a number of simulation studies and a mouse leukemia data.  相似文献   

19.
Subset selection is an extensively studied problem in statistical learning. Especially it becomes popular for regression analysis. This problem has considerable attention for generalized linear models as well as other types of regression methods. Quantile regression is one of the most used types of regression method. In this article, we consider subset selection problem for quantile regression analysis with adopting some recent Bayesian information criteria. We also utilized heuristic optimization during selection process. Simulation and real data application results demonstrate the capability of the mentioned information criteria. According to results, these information criteria can determine the true models effectively in quantile regression models.  相似文献   

20.
Abstract

In this article, we consider the inverse probability weighted estimators for a single-index model with missing covariates when the selection probabilities are known or unknown. It is shown that the estimator for the index parameter by using estimated selection probabilities has a smaller asymptotic variance than that with true selection probabilities, thus is more efficient. Therefore, the important Horvitz-Thompson property is verified for the index parameter in single index model. However, this difference disappears for the estimators of the link function. Some numerical examples and a real data application are also conducted to illustrate the performances of the estimators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号