首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the problem of monitoring process data that can be modelled by exponential distribution is considered when observations are from type-II censoring. Such data are common in many practical inspection environment. An average run length unbiased (ARL-unbiased) control scheme is developed when the in-control scale parameter is known. The performance of the proposed control charts are investigated in terms of the ARL and standard deviation of the run length. The effects of parameter estimation on the proposed control charts are also evaluated. Then, we consider the design of the ARL-unbiased control charts when the in-control scale parameter is estimated. Finally, an example is used to illustrate the implementation of the proposed control charts.  相似文献   

2.
In practice, different practitioners will use different Phase I samples to estimate the process parameters, which will lead to different Phase II control chart's performance. Researches refer to this variability as between-practitioners-variability of control charts. Since between-practitioners-variability is important in the design of the CUSUM median chart with estimated process parameters, the standard deviation of average run length (SDARL) will be used to study its properties. It is shown that the CUSUM median chart requires a larger amount of Phase I samples to sufficiently reduce the variation in the in-control ARL of the CUSUM median chart. Considering the limitation of the amount of the Phase I samples, a bootstrap approach is also used here to adjust the control limits of the CUSUM median chart. Comparisons are made for the CUSUM and Shewhart median charts with estimated parameters when using the adjusted- and unadjusted control limits and some conclusions are made.  相似文献   

3.
The effects of parameter estimation are examined for the well-known c-chart for attributes data. The exact run length distribution is obtained for Phase II applications, when the true average number of non-conformities, c, is unknown, by conditioning on the observed number of non-conformities in a set of reference data (from Phase I). Expressions for various chart performance characteristics, such as the average run length (ARL), the standard deviation of the run length (SDRL) and the median run length (MDRL) are also obtained. Examples show that the actual performance of the chart, both in terms of the false alarm rate (FAR) and the in-control ARL, can be substantially different from what might be expected when c is known, in that an exceedingly large number of false alarms are observed, unless the number of inspection units (the size of the reference dataset) used to estimate c is very large, much larger than is commonly used or recommended in practice. In addition, the actual FAR and the in-control ARL values can be very different from the nominally expected values such as 0.0027 (or ARL0=370), particularly when c is small, even with large amounts of reference data. A summary and conclusions are offered.  相似文献   

4.
In this paper, a new single exponentially weighted moving average (EWMA) control chart based on the weighted likelihood ratio test, referred to as the WLRT chart, is proposed for the problem of monitoring the mean and variance of a normally distributed process variable. It is easy to design, fast to compute, and quite effective for diverse cases including the detection of the decrease in variability and individual observation case. The optimal parameters that can be used as a design aid in selecting specific parameter values based on the average run length (ARL) and the sample size are provided. The in-control (IC) and out-of-control (OC) performance properties of the new chart are compared with some other existing EWMA-type charts. Our simulation results show that the IC run length distribution of the proposed chart is similar to that of a geometric distribution, and it provides quite a robust and satisfactory overall performance for detecting a wide range of shifts in the process mean and/or variability.  相似文献   

5.
Normally, an average run length (ARL) is used as a measure for evaluating the detecting performance of a multivariate control chart. This has a direct impact on the false alarm cost in Phase II. In this article, we first conduct a simulation study to calculate both in-control and out-of-control ARLs under various combinations of process shifts and number of samples. Then, a trade-off analysis between sampling inspection and false alarm costs is performed. Both the simulation results and trade-off analysis suggest that the optimal number of samples for constructing a multivariate control chart in Phase I can be determined.  相似文献   

6.
In this article, we propose an exponentially weighted moving average (EWMA) control chart for the shape parameter β of Weibull processes. The chart is based on a moving range when a single measurement is taken per sampling period. We consider both one-sided (lower-sided and upper-sided) and two-sided control charts. We perform simulations to estimate control limits that achieve a specified average run length (ARL) when the process is in control. The control limits we derive are ARL unbiased in that they result in ARL that is shorter than the stable-process ARL when β has shifted. We also perform simulations to determine Phase I sample size requirements if control limits are based on an estimate of β. We compare the ARL performance of the proposed chart to that of the moving range chart proposed in the literature.  相似文献   

7.
In this paper, we study the effect of estimating the vector of means and the variance–covariance matrix on the performance of two of the most widely used multivariate cumulative sum (CUSUM) control charts, the MCUSUM chart proposed by Crosier [Multivariate generalizations of cumulative sum quality-control schemes, Technometrics 30 (1988), pp. 291–303] and the MC1 chart proposed by Pignatiello and Runger [Comparisons of multivariate CUSUM charts, J. Qual. Technol. 22 (1990), pp. 173–186]. Using simulation, we investigate and compare the in-control and out-of-control performances of the competing charts in terms of the average run length measure. The in-control and out-of-control performances of the competing charts deteriorate significantly if the estimated parameters are used with control limits intended for known parameters, especially when only a few Phase I samples are used to estimate the parameters. We recommend the use of the MC1 chart over that of the MCUSUM chart if the parameters are estimated from a small number of Phase I samples.  相似文献   

8.
A multivariate extension of the adaptive exponentially weighted moving average (AEWMA) control chart is proposed. The new multivariate scheme can detect small and large shifts in the process mean vector effectively. The proposed scheme can be viewed as a smooth combination of a multivariate exponentially weighted moving average (MEWMA) chart and a Shewhart χ2-chart. The optimal design of the proposed chart is given according to a pre-specified in-control average run length and two shift sizes; a small and large shift each measured in terms of the non centrality parameter. The signal resistance of the newly proposed multivariate chart is also given. Comparisons among the new chart, the MEWMA chart, and the combined Shewhart-MEWMA (S-MEWMA) chart in terms of the standard and worst-case average run length profiles are presented. In addition, the three charts are compared with respect to their worst-case signal resistance values. The proposed chart gives somewhat better worst-case ARL and signal resistance values than the competing charts. It also gives better standard ARL performance especially for moderate and large shifts. The effectiveness of our proposed chart is illustrated through an example with simulated data set.  相似文献   

9.
ABSTRACT

In profile monitoring, control charts are proposed to detect unanticipated changes, and it is usually assumed that the in-control parameters are known. However, due to the characteristics of a system or process, the prespecified changes would appear in the process. Moreover, in most applications, the in-control parameters are usually unknown. To overcome these issues, we develop the zone control charts with estimated parameters to detect small shifts of these prespecified changes. The effects of estimation error have been investigated on the performance of the proposed charts. To account for the practitioner-to-practitioner variability, the expected average run length (ARL) and the standard deviation of the average run length (SDARL) is used as the performance metrics. Our results show that the estimation error results in the significant variation in the ARL distribution. Furthermore, in order to adequately reduce the variability, more phase I samples are required in terms of the SDARL metric than that in terms of the expected ARL metric. In addition, more observations on each sampled profile are suggested to improve the charts' performance, especially for small phase I sample sizes. Finally, an illustrative example is given to show the performance of the proposed zone control charts.  相似文献   

10.
A statistical quality control chart is an important tool of the statistical process control, which is widely used to control and monitor a production process. The CUSUM chart is designed to detect a specific shift, provided that the shift size is known in advance. In practice, however, shift sizes are rarely known. It is then customary to use an adaptive CUSUM chart, which can effectively detect a range of shift sizes. In this paper, we enhance the sensitivities of the improved adaptive CUSUM mean charts using an auxiliary-information-based (AIB) mean estimator. The run length performances of the proposed charts are compared with those of the AIB adaptive and non-adaptive CUSUM charts in terms of the average run length (ARL), extra quadratic loss, and integral relative ARL. These run length comparisons reveal that the proposed charts are more sensitive than the existing charts when detecting different kinds of shift in the process mean. An example is given to demonstrate the implementation of existing and proposed charts.  相似文献   

11.
Control charts designed for the properties of non conformities, also called p control charts, are powerful tools used for monitoring a performance of the fraction of non conforming units. Constructing a p chart is often based on the assumption that the in-control proportion of non conforming items (p 0) is known. In practice, the value of p 0 is rarely known and is frequently replaced by an estimate from an in-control reference sample in Phase I. This article investigates the effects of sample sizes in both Phase I and Phase II on the performance of p control charts. The conditional and marginal run length distributions are derived and the corresponding numerical studies are conducted. Moreover, the minimal sample sizes required in Phases I and II to ensure adequate statistical performance are proposed when p 0 = 0.1 and 0.005.  相似文献   

12.
Abstract

The performance of attributes control charts is usually evaluated under the assumption of known process parameters (i.e., the nominal proportion of non conforming units or the nominal average number of nonconformities). However, in practice, these process parameters are rarely known and have to be estimated from an in-control Phase I data set. The major contributions of this paper are (a) the derivation of the run length properties of the Run Rules Phase II c and np charts with estimated parameters, particularly focusing on the ARL, SDRL, and 0.05, 0.5, and 0.95 quantiles of the run length distribution; (b) the investigation of the number m of Phase I samples that is needed by these charts in order to obtain similar in-control ARLs to the known parameters case; and (c) the proposition of new specific chart parameters that allow these charts to have approximately the same in-control ARLs as the ones obtained in the known parameters case.  相似文献   

13.
In this article, we assess the performance of the multivariate exponentially weighted moving average (MEWMA) control chart with estimated parameters while considering the practitioner-to-practitioner variability. We evaluate the chart performance in terms of the in-control average run length (ARL) distributional properties; mainly the average (AARL), the standard deviation (SDARL), and some percentiles. We show through simulations that using estimates in place of the in-control parameters may result in an in-control ARL distribution that almost completely lies below the desired value. We also show that even with the use of larger amounts of historical data, there is still a problem with the excessive false alarm rates. We recommend the use of a recently proposed bootstrap-based design technique for adjusting the control limits. The technique is quite effective in controlling the percentage of short in-control ARLs resulting from the estimation error.  相似文献   

14.
The CUSUM chart is good enough to detect small-to-moderate shifts in the process parameter(s) as it can be optimally designed to detect a particular shift size. The adaptive CUSUM (ACUSUM) chart provides good detection over a range of shift sizes because of its ability to update the reference parameter using the estimated process shift. In this paper, we propose auxiliary-information-based (AIB) optimal CUSUM (OCUSUM) and ACUSUM charts, named AIB-OCUSUM and AIB-ACUSUM charts, using a difference estimator of the process mean. The performance comparisons between existing and proposed charts are made in terms of the average run length (ARL), extra quadratic loss and integral relative ARL measures. It is found that the AIB-OCUSUM and AIB-ACUSUM charts are more sensitive than the AIB-CUSUM and ACUSUM charts, respectively. Moreover, the AIB-ACUSUM chart surpasses the AIB-OCUSUM chart when detecting a range of mean shift sizes. Illustrative examples are given to support the theory.  相似文献   

15.
The steady-state average run length (ARL) is a function of the in-control probabilities of being in each nonabsorbing state. Davis and Woodall (2002) tabulated values that are significantly smaller than the steady-state ARLs, because they used the out-of-control probabilities. The synthetic chart signals when a second sample point falls beyond the control limits, no matter whether one of them falls above the centerline and the other falls below it. The side-sensitive version of the synthetic chart does not signal when the points beyond the control limits are on opposite sides. With this rule, the chart detects mean changes more quickly.  相似文献   

16.
Shewhart and EWMA control charts can be suitably combined to obtain a simple monitoring scheme sensitive to both large and small shifts in the process mean. So far, the performance of the combined Shewhart–EWMA (CSEWMA) has been investigated under the assumption that the process parameters are known. However, parameters are often estimated from reference Phase I samples. Since chart performances may be even largely affected by estimation errors, we study the behaviour of the CSEWMA with estimated parameters in both in- and out-of-control situations. Comparisons with standard Shewhart and EWMA charts are presented. Recommendations are given for Phase I sample size requirements necessary to achieve desired in-control performance.  相似文献   

17.
The effects of parameter estimation on the in-control performance of the Shewhart X¯ chart are studied in prospective (phase 2 or stage 2) applications via a thorough examination of the attained false alarm rate (AFAR), the conditional false alarm rate (CFAR), the conditional and the unconditional run-length distributions, some run-length characteristics such as the ARL, the conditional ARL (CARL), some selected percentiles including the median, and cumulative run-length probabilities. The examination involves both numerical evaluations and graphical displays. The effects of parameter estimation need to be accounted for in designing the chart. To this end, as an application of the exact formulations, chart constants are provided for a specified in-control average run-length of 370 and 500 for a number of subgroups and subgroup sizes. These will be useful in the implementation of the X¯ chart in practice.  相似文献   

18.
A control chart for monitoring process variation by using multiple dependent state (MDS) sampling is constructed in the present article. The operational formulas for in-control and out-of-control average run lengths (ARLs) are derived. Control constants are established by considering the target in-control ARL at a normal process. The extensive ARL tables are reported for various parameters and shifted values of process parameters. The performance of the proposed control chart has been evaluated with several existing charts in regard of ARLs, which empowered the presented chart and proved far better for timely detection of assignable causes. The application of the proposed concept is illustrated with a real-life industrial example and a simulation-based study to elaborate strength of the proposed chart over the existing concepts.  相似文献   

19.
In this paper we discuss the behavior of the Shewhart residual chart and the modified Shewhart chart if the parameters of the underlying process are unknown and thus have to be estimated. We focus on the estimation of the variance. For AR models we also consider the estimation of the AR coefficients. The average run length (ARL) of the control chart with estimated parameters is compared with the ARL of the scheme for known parameters and with the ARL for independent variables. Additionally, we give recommendations on the choice of the estimators in the context of Shewhart control schemes.  相似文献   

20.
Statistical quality control charts have been widely accepted as a potentially powerful process monitoring tool because of their excellent speed in tracking shifts in the underlying process parameter(s). In recent studies, auxiliary-information-based (AIB) control charts have shown superior run length performances than those constructed without using it. In this paper, a new double sampling (DS) control chart is constructed whose plotting-statistics requires information on the study variable and on any correlated auxiliary variable for efficiently monitoring the process mean, namely AIB DS chart. The AIB DS chart also encompasses the classical DS chart. We discuss in detail the construction, optimal design, run length profiles, and the performance evaluations of the proposed chart. It turns out that the AIB DS chart performs uniformly better than the DS chart when detecting different kinds of shifts in the process mean. It is also more sensitive than the classical synthetic and AIB synthetic charts when detecting a particular shift in the process mean. Moreover, with some realistic beliefs, the proposed chart outperforms the exponentially weighted moving average chart. An illustrative example is also presented to explain the working and implementation of the proposed chart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号