首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the variance parameter of the hierarchical normal and inverse gamma model, we analytically calculate the Bayes rule (estimator) with respect to a prior distribution IG (alpha, beta) under Stein's loss function. This estimator minimizes the posterior expected Stein's loss (PESL). We also analytically calculate the Bayes rule and the PESL under the squared error loss. Finally, the numerical simulations exemplify that the PESLs depend only on alpha and the number of observations. The Bayes rules and PESLs under Stein's loss are unanimously smaller than those under the squared error loss.  相似文献   

2.
Abstract

For the restricted parameter space (0,1), we propose Zhang’s loss function which satisfies all the 7 properties for a good loss function on (0,1). We then calculate the Bayes rule (estimator), the posterior expectation, the integrated risk, and the Bayes risk of the parameter in (0,1) under Zhang’s loss function. We also calculate the usual Bayes estimator under the squared error loss function, and the Bayes estimator has been proved to underestimate the Bayes estimator under Zhang’s loss function. Finally, the numerical simulations and a real data example of some monthly magazine exposure data exemplify our theoretical studies of two size relationships about the Bayes estimators and the Posterior Expected Zhang’s Losses (PEZLs).  相似文献   

3.
4.
In the present paper we have proposed a Bayesian approach for making inferences from accelerated life tests which do not require distributional assumptions  相似文献   

5.
We consider Prais–Houthakker heteroscedastic normal regression model having variance of the dependent variable same as square of its expectation. Bayes predictors for the regression coefficient and the mean of a finite population are derived using Zellner's balanced loss function. Bayes predictive expected losses are obtained and compared with those of classical predictors and Bayes predictors under squared error loss function to examine their loss robustness.  相似文献   

6.
For the hierarchical Poisson and gamma model, we calculate the Bayes posterior estimator of the parameter of the Poisson distribution under Stein's loss function which penalizes gross overestimation and gross underestimation equally and the corresponding Posterior Expected Stein's Loss (PESL). We also obtain the Bayes posterior estimator of the parameter under the squared error loss and the corresponding PESL. Moreover, we obtain the empirical Bayes estimators of the parameter of the Poisson distribution with a conjugate gamma prior by two methods. In numerical simulations, we have illustrated: The two inequalities of the Bayes posterior estimators and the PESLs; the moment estimators and the Maximum Likelihood Estimators (MLEs) are consistent estimators of the hyperparameters; the goodness-of-fit of the model to the simulated data. The numerical results indicate that the MLEs are better than the moment estimators when estimating the hyperparameters. Finally, we exploit the attendance data on 314 high school juniors from two urban high schools to illustrate our theoretical studies.  相似文献   

7.
In this article, we consider Bayes prediction in a finite population under the simple location error-in-variables superpopulation model. Bayes predictor of the finite population mean under Zellner's balanced loss function and the corresponding relative losses and relative savings loss are derived. The prior distribution of the unknown location parameter of the model is assumed to have a non-normal distribution belonging to the class of Edgeworth series distributions. Effects of non normality of the “true” prior distribution and that of a possible misspecification of the loss function on the Bayes predictor are illustrated for a hypothetical population.  相似文献   

8.
We consider Khamis' (1960) Laguerre expansion with gamma weight function as a class of “near-gamma” priors (K-prior) to obtain the Bayes predictor of a finite population mean under the Poisson regression superpopulation model using Zellner's balanced loss function (BLF). Kullback–Leibler (K-L) distance between gamma and some K-priors is tabulated to examine the quantitative prior robustness. Some numerical investigations are also conducted to illustrate the effects of a change in skewness and/or kurtosis on the Bayes predictor and the corresponding minimal Bayes predictive expected loss (MBPEL). Loss robustness with respect to the class of BLFs is also examined in terms of relative savings loss (RSL).  相似文献   

9.
This paper addresses the problem of estimating a matrix of the normal means, where the variances are unknown but common. The approach to this problem is provided by a hierarchical Bayes modeling for which the first stage prior for the means is matrix-variate normal distribution with mean zero matrix and a covariance structure and the second stage prior for the covariance is similar to Jeffreys’ rule. The resulting hierarchical Bayes estimators relative to the quadratic loss function belong to a class of matricial shrinkage estimators. Certain conditions are obtained for admissibility and minimaxity of the hierarchical Bayes estimators.  相似文献   

10.
This paper shows that a minimax Bayes rule and shrinkage estimators can be effectively applied to portfolio selection under the Bayesian approach. Specifically, it is shown that the portfolio selection problem can result in a statistical decision problem in some situations. Following that, we present a method for solving a problem involved in portfolio selection under the Bayesian approach.  相似文献   

11.
In this article, we obtained Bayes estimators of parameters of Inverse Gaussian distributions under asymmetric loss function using Lindley's Approximation (L-Approximation). The proposed estimators have been compared with the corresponding estimators obtained under symmetric loss function and MLE for their risks. This comparison is illustrated using Monte-Carlo study of 2,000 simulated sample from the Inverse Gaussian distribution.  相似文献   

12.
Sihm et al. (2016 Sihm, J. S., A. Chhabra, and S. N. Gupta. 2016. An optional unrelated question RRT model. Involve: A Journal of Mathematics 9 (2):195209.[Crossref] [Google Scholar]) proposed an unrelated question binary optional randomized response technique (RRT) model for estimating the proportion of population that possess a sensitive characteristic and the sensitivity level of the question. In our work, decision theoretic approach has been followed to obtain Bayes estimates of the two parameters along with their corresponding minimal Bayes posterior expected losses (BPEL) using beta prior and squared error loss function (SELF). Relative losses are also examined to compare the performances of the Bayes estimates with those of the classical estimates obtained by Sihm et al. (2016 Sihm, J. S., A. Chhabra, and S. N. Gupta. 2016. An optional unrelated question RRT model. Involve: A Journal of Mathematics 9 (2):195209.[Crossref] [Google Scholar]). The results obtained are illustrated with the help of real survey data using non informative prior.  相似文献   

13.
Received: August 5, 1999; revised version: June 14, 2000  相似文献   

14.
15.
Bayes estimators of reliability for the lognormal failure distribution with two parameters (M,∑) are obtained both for informative priors of normal-gamma type and for the vague prior of Jeffreys. The estimators are in terms of the t-distribution function. The Bayes estimators are compared with the maximum likelihood and minimum variance unbiased estimators of reliabil-ity using Monte Carlo simulations.  相似文献   

16.
It is shown that linear transformations of the logarithm are the only functions of the likelihood whose expected values discriminate between correct and incorrect likelihoods by a simple ordering property, assuming the correct probability density function is continuous. Also, an extension of this result is given for the predictive densities considered by Akaike.  相似文献   

17.
This article considers estimation of the slope parameter of the linear regression model with Student-t errors in the presence of uncertain prior information on the value of the unknown slope. Incorporating uncertain non sample prior information with the sample data the unrestricted, restricted, preliminary test, and shrinkage estimators are defined. The performances of the estimators are compared based on the criteria of unbiasedness and mean squared errors. Both analytical and graphical methods are explored. Although none of the estimators is uniformly superior to the others, if the non sample information is close to its true value, the shrinkage estimator over performs the rest of the estimators.  相似文献   

18.
In this article we discuss Bayesian estimation of Kumaraswamy distributions based on three different types of censored samples. We obtain Bayes estimates of the model parameters using two different types of loss functions (LINEX and Quadratic) under each censoring scheme (left censoring, singly type-II censoring, and doubly type-II censoring) using Monte Carlo simulation study with posterior risk plots for each different choices of the model parameters. Also, detailed discussion regarding elicitation of the hyperparameters under the dependent prior setup is discussed. If one of the shape parameters is known then closed form expressions of the Bayes estimates corresponding to posterior risk under both the loss functions are available. To provide the efficacy of the proposed method, a simulation study is conducted and the performance of the estimation is quite interesting. For illustrative purpose, real-life data are considered.  相似文献   

19.
Empirical Bayes estimates of the local false discovery rate can reflect uncertainty about the estimated prior by supplementing their Bayesian posterior probabilities with confidence levels as posterior probabilities. This use of coherent fiducial inference with hierarchical models generates set estimators that propagate uncertainty to varying degrees. Some of the set estimates approach estimates from plug-in empirical Bayes methods for high numbers of comparisons and can come close to the usual confidence sets given a sufficiently low number of comparisons.  相似文献   

20.
A simple result concerning the canonical expansions of mixed bivariate distributions is considered. This result is then applied to analyze the correlation structures of the Bates-Neyman accident proneness model and its generalization, to derive probability inequalities based on the concept of positive dependence, and to construct a bivariate beta distribution with positive correlation coefficient applicable in computer simulation experiments. The mixture formulation of the conditional distribution of this class of mixed bivariate distributions is used to define and generate first-order autoregressive gamma and negative binomial sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号