首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

Maximum likelihood estimation for the type I generalised logistic distributions is investigated. We show that the maximum likelihood estimation usually exists, except when the so-called embedded model problem occurs. A full set of embedded distributions is derived, including Gumbel distribution and a two-parameter reciprocal exponential distribution. Properties relating the embedded distributions are given. We also provide criteria to determine when the embedded distribution occurs. Examples are given for illustration.  相似文献   

2.
In this article, we introduce a new estimator for the generalized Pareto distribution, which is based on the maximum likelihood estimation and the goodness of fit. The asymptotic normality of the new estimator is shown and a small simulation. From the simulation, the performance of the new estimator is roughly comparable with maximum likelihood for positive values of the shape parameter and often much better than maximum likelihood for negative values.  相似文献   

3.
Abstract

This paper investigates the first-order random coefficient integer valued autoregressive process with the occasional level shift random noise based on dual empirical likelihood. The limiting distribution of log empirical likelihood ratio statistic is constructed. Asymptotic convergence and confidence region results of empirical likelihood ratio are given. Hypothesis testing is considering, and maximum empirical likelihood estimation for parameter is acquired. Simulations are given to show that the maximum empirical likelihood estimation is more efficient than the conditional least squares estimation.  相似文献   

4.
ABSTRACT

When a distribution function is in the max domain of attraction of an extreme value distribution, its tail can be well approximated by a generalized Pareto distribution. Based on this fact we use a moment estimation idea to propose an adapted maximum likelihood estimator for the extreme value index, which can be understood as a combination of the maximum likelihood estimation and moment estimation. Under certain regularity conditions, we derive the asymptotic normality of the new estimator and investigate its finite sample behavior by comparing with several classical or competitive estimators. A simulation study shows that the new estimator is competitive with other estimators in view of average bias, average MSE, and coefficient of variance of the new device for the optimal selection of the threshold.  相似文献   

5.
The maximum likelihood estimation of parameters of the Poisson binomial distribution, based on a sample with exact and grouped observations, is considered by applying the EM algorithm (Dempster et al, 1977). The results of Louis (1982) are used in obtaining the observed information matrix and accelerating the convergence of the EM algorithm substantially. The maximum likelihood estimation from samples consisting entirely of complete (Sprott, 1958) or grouped observations are treated as special cases of the estimation problem mentioned above. A brief account is given for the implementation of the EM algorithm when the sampling distribution is the Neyman Type A since the latter is a limiting form of the Poisson binomial. Numerical examples based on real data are included.  相似文献   

6.
We reveal that the minimum Anderson–Darling (MAD) estimator is a variant of the maximum likelihood method. Furthermore, it is shown that the MAD estimator offers excellent opportunities for parameter estimation if there is no explicit formulation for the distribution model. The computation time for the MAD estimator with approximated cumulative distribution function is much shorter than that of the classical maximum likelihood method with approximated probability density function. Additionally, we research the performance of the MAD estimator for the generalized Pareto distribution and demonstrate a further advantage of the MAD estimator with an issue of seismic hazard analysis.  相似文献   

7.
In this paper, we estimate multicomponent stress-strength reliability by assuming Burr-XII distribution. The research methodology adopted here is to estimate the parameter using maximum likelihood estimation. Reliability is estimated using the maximum likelihood method of estimation and results are compared using the Monte Carlo simulation for small samples. Using real data sets we illustrate the procedure clearly.  相似文献   

8.
We proposed a new class of maximum a posteriori estimators for the parameters of the Gamma distribution. These estimators have simple closed-form expressions and can be rewritten as a bias-corrected maximum likelihood estimators presented by Ye and Chen [Closed-form estimators for the gamma distribution derived from likelihood equations. Am Statist. 2017;71(2):177–181]. A simulation study was carried out to compare different estimation procedures. Numerical results revels that our new estimation scheme outperforms the existing closed-form estimators and produces extremely efficient estimates for both parameters, even for small sample sizes.  相似文献   

9.
We address the issue of performing inference on the parameters that index the modified extended Weibull (MEW) distribution. We show that numerical maximization of the MEW log-likelihood function can be problematic. It is even possible to encounter maximum likelihood estimates that are not finite, that is, it is possible to encounter monotonic likelihood functions. We consider different penalization schemes to improve maximum likelihood point estimation. A penalization scheme based on the Jeffreys’ invariant prior is shown to be particularly useful. Simulation results on point estimation, interval estimation, and hypothesis testing inference are presented. Two empirical applications are presented and discussed.  相似文献   

10.
A numerically feasible algorithm is proposed for maximum likelihood estimation of the parameters of the Dirichlet distribution. The performance of the proposed method is compared with the method of moments using bias ratio and squared errors by Monte Carlo simulation. For these criteria, it is found that even in small samples maximum likelihood estimation has advantages over the method of moments.  相似文献   

11.
The inverse Gaussian-Poisson (two-parameter Sichel) distribution is useful in fitting overdispersed count data. We consider linear models on the mean of a response variable, where the response is in the form of counts exhibiting extra-Poisson variation, and assume an IGP error distribution. We show how maximum likelihood estimation may be carried out using iterative Newton-Raphson IRLS fitting, where GLIM is used for the IRLS part of the maximization. Approximate likelihood ratio tests are given.  相似文献   

12.
A new family of slash distributions, the modified slashed-Rayleigh distribution, is proposed and studied. This family is an extension of the ordinary Rayleigh distribution, being more flexible in terms of distributional kurtosis. It arises as a quotient of two independent random variables, one being a Rayleigh distribution in the numerator and the other a power of the exponential distribution in denominator. We present properties of the proposed family. In addition, we carry out estimation of the model parameters by moment and maximum likelihood methods. Finally, we conduct a small-scale simulation study to evaluate the performance of the maximum likelihood estimators and apply the results to a real data set, revealing its good performance.  相似文献   

13.
The Pareto distribution is a well-known probability distribution in statistics, which has been widely used in many fields, such as finance, physics, hydrology, geology and astronomy. However, the parameter estimation for the truncated Pareto distribution is much more complicated than that for the Pareto distribution. In this paper, we demonstrate that the bias of the maximum likelihood estimation for the truncated Pareto distribution can be significantly reduced by its jackknife estimation, which has a very simple form.  相似文献   

14.
Estimation is considered for a class of models which are simple extensions of the generalized extreme value (GEV) distribution, suitable for introducing time dependence into models which are otherwise only spatially dependent. Maximum likelihood estimation and the method of probability weighted moment estimation are identified as most useful for fitting these models. The relative merits of these methods, and others, is discussed in the context of estimation for the GEV distribution, with particular reference to the non - regularity of the GEV distribution for particular parameter values. In the case of maximum likelihood estimation, first and second derivatives of the log likelihood are evaluated for the models.  相似文献   

15.
The purpose of this paper is to estimate the parameters of the location–scale distribution family. As a special case, the method is used for estimating the parameters of the normal distribution and Cauchy distribution. For the Cauchy distribution, neither the moment estimation method nor the maximum likelihood estimation method works properly for estimating the parameters. The quantiles for obtaining confidence intervals and point estimates for the parameters of the two-parameter Cauchy distribution are given in the paper. It is shown that the estimators obtained in this paper are unbiased with respect to the median and possess some optimal properties.  相似文献   

16.
We present a novel model, which is a two-parameter extension of the Poisson distribution. Its normalizing constant is related to the Touchard polynomials, hence the name of this model. It is a flexible distribution that can account for both under- or overdispersion and concentration of zeros that are frequently found in non-Poisson count data. In contrast to some other generalizations, the Hessian matrix for maximum likelihood estimation of the Touchard parameters has a simple form. We exemplify with three data sets, showing that our suggested model is a competitive candidate for fitting non-Poisson counts.  相似文献   

17.
In this paper, we consider the family of skew generalized t (SGT) distributions originally introduced by Theodossiou [P. Theodossiou, Financial data and the skewed generalized t distribution, Manage. Sci. Part 1 44 (12) ( 1998), pp. 1650–1661] as a skew extension of the generalized t (GT) distribution. The SGT distribution family warrants special attention, because it encompasses distributions having both heavy tails and skewness, and many of the widely used distributions such as Student's t, normal, Hansen's skew t, exponential power, and skew exponential power (SEP) distributions are included as limiting or special cases in the SGT family. We show that the SGT distribution can be obtained as the scale mixture of the SEP and generalized gamma distributions. We investigate several properties of the SGT distribution and consider the maximum likelihood estimation of the location, scale, and skewness parameters under the assumption that the shape parameters are known. We show that if the shape parameters are estimated along with the location, scale, and skewness parameters, the influence function for the maximum likelihood estimators becomes unbounded. We obtain the necessary conditions to ensure the uniqueness of the maximum likelihood estimators for the location, scale, and skewness parameters, with known shape parameters. We provide a simple iterative re-weighting algorithm to compute the maximum likelihood estimates for the location, scale, and skewness parameters and show that this simple algorithm can be identified as an EM-type algorithm. We finally present two applications of the SGT distributions in robust estimation.  相似文献   

18.
In this paper, a new compounding distribution, named the Weibull–Poisson distribution is introduced. The shape of failure rate function of the new compounding distribution is flexible, it can be decreasing, increasing, upside-down bathtub-shaped or unimodal. A comprehensive mathematical treatment of the proposed distribution and expressions of its density, cumulative distribution function, survival function, failure rate function, the kth raw moment and quantiles are provided. Maximum likelihood method using EM algorithm is developed for parameter estimation. Asymptotic properties of the maximum likelihood estimates are discussed, and intensive simulation studies are conducted for evaluating the performance of parameter estimation. The use of the proposed distribution is illustrated with examples.  相似文献   

19.
In this article, we consider a modified version of logarithmic series distribution and study some of its properties. The maximum likelihood estimation of the parameters of the modified distribution is discussed and the distribution has been fitted to certain real life data sets. Tests are also carried out for justifying the significance of the additional parameter of the modified distribution.  相似文献   

20.
The generalized extreme-value has been the distribution of choice for modeling available maxima (or minima) data since theory has shown it to be the limiting form of the distribution of extremes. However, fits to finite samples are not always adequate. Hosking (1994) and Parida (1999) suggest the four-parameter Kappa distribution as an alternative. Hosking (1994) developed an L-moment procedure for estimation. Some compromises must be made in practice however, as seen in Parida (1999). L-moment estimators of the four-parameter Kappa distribution are not always computable nor feasible. A simulation study in this paper quantifies the extent of each problem. Maximum likelihood is investigated as an alternative method of estimation and a simulation study compares the performance of both methods of estimation. Finally, further benefits of maximum likelihood are shown when wind speeds From the Tropical Pacific are examined and the weekly maxima for 10 buoys in the area are analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号