首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Patient dropout is a common problem in studies that collect repeated binary measurements. Generalized estimating equations (GEE) are often used to analyze such data. The dropout mechanism may be plausibly missing at random (MAR), i.e. unrelated to future measurements given covariates and past measurements. In this case, various authors have recommended weighted GEE with weights based on an assumed dropout model, or an imputation approach, or a doubly robust approach based on weighting and imputation. These approaches provide asymptotically unbiased inference, provided the dropout or imputation model (as appropriate) is correctly specified. Other authors have suggested that, provided the working correlation structure is correctly specified, GEE using an improved estimator of the correlation parameters (‘modified GEE’) show minimal bias. These modified GEE have not been thoroughly examined. In this paper, we study the asymptotic bias under MAR dropout of these modified GEE, the standard GEE, and also GEE using the true correlation. We demonstrate that all three methods are biased in general. The modified GEE may be preferred to the standard GEE and are subject to only minimal bias in many MAR scenarios but in others are substantially biased. Hence, we recommend the modified GEE be used with caution.  相似文献   

2.
In longitudinal data, missing observations occur commonly with incomplete responses and covariates. Missing data can have a ‘missing not at random’ mechanism, a non‐monotone missing pattern, and moreover response and covariates can be missing not simultaneously. To avoid complexities in both modelling and computation, a two‐stage estimation method and a pairwise‐likelihood method are proposed. The two‐stage estimation method enjoys simplicities in computation, but incurs more severe efficiency loss. On the other hand, the pairwise approach leads to estimators with better efficiency, but can be cumbersome in computation. In this paper, we develop a compromise method using a hybrid pairwise‐likelihood framework. Our proposed approach has better efficiency than the two‐stage method, but its computational cost is still reasonable compared to the pairwise approach. The performance of the methods is evaluated empirically by means of simulation studies. Our methods are used to analyse longitudinal data obtained from the National Population Health Study.  相似文献   

3.
This paper compares the performance of weighted generalized estimating equations (WGEEs), multiple imputation based on generalized estimating equations (MI-GEEs) and generalized linear mixed models (GLMMs) for analyzing incomplete longitudinal binary data when the underlying study is subject to dropout. The paper aims to explore the performance of the above methods in terms of handling dropouts that are missing at random (MAR). The methods are compared on simulated data. The longitudinal binary data are generated from a logistic regression model, under different sample sizes. The incomplete data are created for three different dropout rates. The methods are evaluated in terms of bias, precision and mean square error in case where data are subject to MAR dropout. In conclusion, across the simulations performed, the MI-GEE method performed better in both small and large sample sizes. Evidently, this should not be seen as formal and definitive proof, but adds to the body of knowledge about the methods’ relative performance. In addition, the methods are compared using data from a randomized clinical trial.  相似文献   

4.
Summary.  In a large, prospective longitudinal study designed to monitor cardiac abnormalities in children born to women who are infected with the human immunodeficiency virus, instead of a single outcome variable, there are multiple binary outcomes (e.g. abnormal heart rate, abnormal blood pressure and abnormal heart wall thickness) considered as joint measures of heart function over time. In the presence of missing responses at some time points, longitudinal marginal models for these multiple outcomes can be estimated by using generalized estimating equations (GEEs), and consistent estimates can be obtained under the assumption of a missingness completely at random mechanism. When the missing data mechanism is missingness at random, i.e. the probability of missing a particular outcome at a time point depends on observed values of that outcome and the remaining outcomes at other time points, we propose joint estimation of the marginal models by using a single modified GEE based on an EM-type algorithm. The method proposed is motivated by the longitudinal study of cardiac abnormalities in children who were born to women infected with the human immunodeficiency virus, and analyses of these data are presented to illustrate the application of the method. Further, in an asymptotic study of bias, we show that, under a missingness at random mechanism in which missingness depends on all observed outcome variables, our joint estimation via the modified GEE produces almost unbiased estimates, provided that the correlation model has been correctly specified, whereas estimates from standard GEEs can lead to substantial bias.  相似文献   

5.
Binary data are commonly used as responses to assess the effects of independent variables in longitudinal factorial studies. Such effects can be assessed in terms of the rate difference (RD), the odds ratio (OR), or the rate ratio (RR). Traditionally, the logistic regression seems always a recommended method with statistical comparisons made in terms of the OR. Statistical inference in terms of the RD and RR can then be derived using the delta method. However, this approach is hard to realize when repeated measures occur. To obtain statistical inference in longitudinal factorial studies, the current article shows that the mixed-effects model for repeated measures, the logistic regression for repeated measures, the log-transformed regression for repeated measures, and the rank-based methods are all valid methods that lead to inference in terms of the RD, OR, and RR, respectively. Asymptotic linear relationships between the estimators of the regression coefficients of these models are derived when the weight (working covariance) matrix is an identity matrix. Conditions for the Wald-type tests to be asymptotically equivalent in these models are provided and powers were compared using simulation studies. A phase III clinical trial is used to illustrate the investigated methods with corresponding SAS® code supplied.  相似文献   

6.
In this paper, we investigate the effect of tuberculosis pericarditis (TBP) treatment on CD4 count changes over time and draw inferences in the presence of missing data. We accounted for missing data and conducted sensitivity analyses to assess whether inferences under missing at random (MAR) assumption are sensitive to not missing at random (NMAR) assumptions using the selection model (SeM) framework. We conducted sensitivity analysis using the local influence approach and stress-testing analysis. Our analyses showed that the inferences from the MAR are robust to the NMAR assumption and influential subjects do not overturn the study conclusions about treatment effects and the dropout mechanism. Therefore, the missing CD4 count measurements are likely to be MAR. The results also revealed that TBP treatment does not interact with HIV/AIDS treatment and that TBP treatment has no significant effect on CD4 count changes over time. Although the methods considered were applied to data in the IMPI trial setting, the methods can also be applied to clinical trials with similar settings.  相似文献   

7.
The authors consider regression analysis for binary data collected repeatedly over time on members of numerous small clusters of individuals sharing a common random effect that induces dependence among them. They propose a mixed model that can accommodate both these structural and longitudinal dependencies. They estimate the parameters of the model consistently and efficiently using generalized estimating equations. They show through simulations that their approach yields significant gains in mean squared error when estimating the random effects variance and the longitudinal correlations, while providing estimates of the fixed effects that are just as precise as under a generalized penalized quasi‐likelihood approach. Their method is illustrated using smoking prevention data.  相似文献   

8.
When modeling correlated binary data in the presence of informative cluster sizes, generalized estimating equations with either resampling or inverse-weighting, are often used to correct for estimation bias. However, existing methods for the clustered longitudinal setting assume constant cluster sizes over time. We present a subject-weighted generalized estimating equations scheme that provides valid parameter estimation for the clustered longitudinal setting while allowing cluster sizes to change over time. We compare, via simulation, the performance of existing methods to our subject-weighted approach. The subject-weighted approach was the only method that showed negligible bias, with excellent coverage, for all model parameters.  相似文献   

9.
Clustered longitudinal data feature cross‐sectional associations within clusters, serial dependence within subjects, and associations between responses at different time points from different subjects within the same cluster. Generalized estimating equations are often used for inference with data of this sort since they do not require full specification of the response model. When data are incomplete, however, they require data to be missing completely at random unless inverse probability weights are introduced based on a model for the missing data process. The authors propose a robust approach for incomplete clustered longitudinal data using composite likelihood. Specifically, pairwise likelihood methods are described for conducting robust estimation with minimal model assumptions made. The authors also show that the resulting estimates remain valid for a wide variety of missing data problems including missing at random mechanisms and so in such cases there is no need to model the missing data process. In addition to describing the asymptotic properties of the resulting estimators, it is shown that the method performs well empirically through simulation studies for complete and incomplete data. Pairwise likelihood estimators are also compared with estimators obtained from inverse probability weighted alternating logistic regression. An application to data from the Waterloo Smoking Prevention Project is provided for illustration. The Canadian Journal of Statistics 39: 34–51; 2011 © 2010 Statistical Society of Canada  相似文献   

10.
In this article, we consider statistical inference for longitudinal partial linear models when the response variable is sometimes missing with missingness probability depending on the covariate that is measured with error. A generalized empirical likelihood (GEL) method is proposed by combining correction attenuation and quadratic inference functions. The method that takes into consideration the correlation within groups is used to estimate the regression coefficients. Furthermore, residual-adjusted empirical likelihood (EL) is employed for estimating the baseline function so that undersmoothing is avoided. The empirical log-likelihood ratios are proven to be asymptotically Chi-squared, and the corresponding confidence regions for the parameters of interest are then constructed. Compared with methods based on NAs, the GEL does not require consistent estimators for the asymptotic variance and bias. The numerical study is conducted to compare the performance of the EL and the normal approximation-based method, and a real example is analysed.  相似文献   

11.
Liang and Zeger (1986) proposed an extension of generalized linear models to the analysis of longitudinal data. In their formulation, a common dispersion parameter assumption across observation times is required. However, this assumption is not expected to hold in most situations. Park (1993) proposed a simple extension of Liang and Zeger's formulation to allow for different dispersion parameters for each time point. The proposed model is easy to apply without heavy computations and useful to handle the cases when variations in over-dispersion over time exist. In this paper, we focus on evaluating the effect of additional dispersion parameters on the estimators of model parameters. Through a Monte Carlo simulation study, efficiency of Park's method is compared with the Liang and Zeger's method.  相似文献   

12.
Longitudinal data often contain missing observations, and it is in general difficult to justify particular missing data mechanisms, whether random or not, that may be hard to distinguish. The authors describe a likelihood‐based approach to estimating both the mean response and association parameters for longitudinal binary data with drop‐outs. They specify marginal and dependence structures as regression models which link the responses to the covariates. They illustrate their approach using a data set from the Waterloo Smoking Prevention Project They also report the results of simulation studies carried out to assess the performance of their technique under various circumstances.  相似文献   

13.
Joint models for longitudinal and time-to-event data have been applied in many different fields of statistics and clinical studies. However, the main difficulty these models have to face with is the computational problem. The requirement for numerical integration becomes severe when the dimension of random effects increases. In this paper, a modified two-stage approach has been proposed to estimate the parameters in joint models. In particular, in the first stage, the linear mixed-effects models and best linear unbiased predictorsare applied to estimate parameters in the longitudinal submodel. In the second stage, an approximation of the fully joint log-likelihood is proposed using the estimated the values of these parameters from the longitudinal submodel. Survival parameters are estimated bymaximizing the approximation of the fully joint log-likelihood. Simulation studies show that the approach performs well, especially when the dimension of random effects increases. Finally, we implement this approach on AIDS data.  相似文献   

14.
We propose a joint modeling likelihood-based approach for studies with repeated measures and informative right censoring. Joint modeling of longitudinal and survival data are common approaches but could result in biased estimates if proportionality of hazards is violated. To overcome this issue, and given that the exact time of dropout is typically unknown, we modeled the censoring time as the number of follow-up visits and extended it to be dependent on selected covariates. Longitudinal trajectories for each subject were modeled to provide insight into disease progression and incorporated with the number follow-up visits in one likelihood function.  相似文献   

15.
This paper considers the nonparametric inverse probability weighted estimation for functional data with missing response data at random. Under mild conditions, the asymptotic properties of the proposed estimation method are established. Based on the resampling method, the estimation of the asymptotic variance of the proposed estimator is obtained. Finally, the finite sample properties of the proposed estimation method are investigated via Monte Carlo simulation studies. A real data analysis is given to illustrate the use of the proposed method.  相似文献   

16.
Finite mixture models are currently used to analyze heterogeneous longitudinal data. By releasing the homogeneity restriction of nonlinear mixed-effects (NLME) models, finite mixture models not only can estimate model parameters but also cluster individuals into one of the pre-specified classes with class membership probabilities. This clustering may have clinical significance, which might be associated with a clinically important binary outcome. This article develops a joint modeling of a finite mixture of NLME models for longitudinal data in the presence of covariate measurement errors and a logistic regression for a binary outcome, linked by individual latent class indicators, under a Bayesian framework. Simulation studies are conducted to assess the performance of the proposed joint model and a naive two-step model, in which finite mixture model and logistic regression are fitted separately, followed by an application to a real data set from an AIDS clinical trial, in which the viral dynamics and dichotomized time to the first decline of CD4/CD8 ratio are analyzed jointly.  相似文献   

17.
Longitudinal clinical trials with long follow-up periods almost invariably suffer from a loss to follow-up and non-compliance with the assigned therapy. An example is protocol 128 of the AIDS Clinical Trials Group, a 5-year equivalency trial comparing reduced dose zidovudine with the standard dose for treatment of paediatric acquired immune deficiency syndrome patients. This study compared responses to treatment by using both clinical and cognitive outcomes. The cognitive outcomes are of particular interest because the effects of human immunodeficiency virus infection of the central nervous system can be more acute in children than in adults. We formulate and apply a Bayesian hierarchical model to estimate both the intent-to-treat effect and the average causal effect of reducing the prescribed dose of zidovudine by 50%. The intent-to-treat effect quantifies the causal effect of assigning the lower dose, whereas the average causal effect represents the causal effect of actually taking the lower dose. We adopt a potential outcomes framework where, for each individual, we assume the existence of a different potential outcomes process at each level of time spent on treatment. The joint distribution of the potential outcomes and the time spent on assigned treatment is formulated using a hierarchical model: the potential outcomes distribution is given at the first level, and dependence between the outcomes and time on treatment is specified at the second level by linking the time on treatment to subject-specific effects that characterize the potential outcomes processes. Several distributional and structural assumptions are used to identify the model from observed data, and these are described in detail. A detailed analysis of AIDS Clinical Trials Group protocol 128 is given; inference about both the intent-to-treat effect and average causal effect indicate a high probability of dose equivalence with respect to cognitive functioning.  相似文献   

18.
Abstract

A method is proposed for the estimation of missing data in analysis of covariance models. This is based on obtaining an estimate of the missing observation that minimizes the error sum of squares. Specific derivation of this estimate is carried out for the one-factor analysis of covariance, and numerical examples are given to show the nature of the estimates produced. Parameter estimates of the imputed data are then compared with those of the incomplete data.  相似文献   

19.
A random-effects transition model is proposed to model the economic activity status of household members. This model is introduced to take into account two kinds of correlations; one due to the longitudinal nature of the study, which will be considered using a transition parameter, and the other due to the existing correlation between responses of members of the same household which is taken into account by introducing random coefficients into the model. The results are presented based on the homogeneous (all parameters are not changed by time) and non-homogeneous Markov models with random coefficients. A Bayesian approach via the Gibbs sampling is used to perform parameter estimation. Results of using random-effects transition model are compared, using deviance information criterion, with those of three other models which exclude random effects and/or transition effects. It is shown that the full model gains more precision due to the consideration of all aspects of the process which generated the data. To illustrate the utility of the proposed model, a longitudinal data set which is extracted from the Iranian Labour Force Survey is analysed to explore the simultaneous effect of some covariates on the current economic activity as a nominal response. Also, some sensitivity analyses are performed to assess the robustness of the posterior estimation of the transition parameters to the perturbations of the prior parameters.  相似文献   

20.
In this paper, three analysis procedures for repeated correlated binary data with no a priori ordering of the measurements are described and subsequently investigated. Examples for correlated binary data could be the binary assessments of subjects obtained by several raters in the framework of a clinical trial. This topic is especially of relevance when success criteria have to be defined for dedicated imaging trials involving several raters conducted for regulatory purposes. First, an analytical result on the expectation of the ‘Majority rater’ is presented when only the marginal distributions of the single raters are given. The paper provides a simulation study where all three analysis procedures are compared for a particular setting. It turns out that in many cases, ‘Average rater’ is associated with a gain in power. Settings were identified where ‘Majority significant’ has favorable properties. ‘Majority rater’ is in many cases difficult to interpret. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号