首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary.  The problem of component choice in regression-based prediction has a long history. The main cases where important choices must be made are functional data analysis, and problems in which the explanatory variables are relatively high dimensional vectors. Indeed, principal component analysis has become the basis for methods for functional linear regression. In this context the number of components can also be interpreted as a smoothing parameter, and so the viewpoint is a little different from that for standard linear regression. However, arguments for and against conventional component choice methods are relevant to both settings and have received significant recent attention. We give a theoretical argument, which is applicable in a wide variety of settings, justifying the conventional approach. Although our result is of minimax type, it is not asymptotic in nature; it holds for each sample size. Motivated by the insight that is gained from this analysis, we give theoretical and numerical justification for cross-validation choice of the number of components that is used for prediction. In particular we show that cross-validation leads to asymptotic minimization of mean summed squared error, in settings which include functional data analysis.  相似文献   

2.
Summary.  We analyse the shapes of star-shaped objects which are prealigned. This is motivated from two examples studying the growth of leaves, and the temporal evolution of tree rings. In the latter case measurements were taken at fixed angles whereas in the former case the angles were free. Subsequently, this leads to different shape spaces, related to different concepts of size, for the analysis. Whereas several shape spaces already existed in the literature when the angles are fixed, a new shape space for free angles, called spherical shape space , needed to be introduced. We compare these different shape spaces both regarding their mathematical properties and in their adequacy to the data at hand; we then apply suitably defined principal component analysis on these. In both examples we find that the shapes evolve mainly along the first principal component during growth; this is the 'geodesic hypothesis' that was formulated by Le and Kume. Moreover, we could link change-points of this evolution to significant changes in environmental conditions.  相似文献   

3.
Due to the near unit-root behavior of interest rates, changes in individual interest-rate series are difficult to forecast. We propose an innovative way of applying dynamic term structure models to predict future changes in interest-rate portfolios. Instead of directly forecasting the movements based on the estimated factor dynamics, we use the dynamic term structure model as a decomposition tool and decompose each interest-rate series into two components: a persistent component captured by the dynamic factors, and a strongly mean-reverting component given by the pricing residuals of the model. With this decomposition, we form interest-rate portfolios that are first-order neutral to the persistent dynamic factors, but are exposed to the strongly mean-reverting residuals. We show that the predictability on the changes of these interest-rate portfolios is significant both statistically and economically. We explore the implications of the predictability in future interest-rate modeling.  相似文献   

4.
Qunfang Xu 《Statistics》2017,51(6):1280-1303
In this paper, semiparametric modelling for longitudinal data with an unstructured error process is considered. We propose a partially linear additive regression model for longitudinal data in which within-subject variances and covariances of the error process are described by unknown univariate and bivariate functions, respectively. We provide an estimating approach in which polynomial splines are used to approximate the additive nonparametric components and the within-subject variance and covariance functions are estimated nonparametrically. Both the asymptotic normality of the resulting parametric component estimators and optimal convergence rate of the resulting nonparametric component estimators are established. In addition, we develop a variable selection procedure to identify significant parametric and nonparametric components simultaneously. We show that the proposed SCAD penalty-based estimators of non-zero components have an oracle property. Some simulation studies are conducted to examine the finite-sample performance of the proposed estimation and variable selection procedures. A real data set is also analysed to demonstrate the usefulness of the proposed method.  相似文献   

5.
In this article, we study inferences for reliability functions of the system having two components connected in series. Suppose that the lifetime of one component has a lognormal distribution. Lognormal, exponential, and weibull distributions are considered for the lifetime of the other component. Using the generalized inference approach, we obtain confidence intervals of our interested parameters with good coverage. Some frequentist properties in small-sample cases and large-sample cases are proved.  相似文献   

6.
In this paper, we consider the estimation of partially linear additive quantile regression models where the conditional quantile function comprises a linear parametric component and a nonparametric additive component. We propose a two-step estimation approach: in the first step, we approximate the conditional quantile function using a series estimation method. In the second step, the nonparametric additive component is recovered using either a local polynomial estimator or a weighted Nadaraya–Watson estimator. Both consistency and asymptotic normality of the proposed estimators are established. Particularly, we show that the first-stage estimator for the finite-dimensional parameters attains the semiparametric efficiency bound under homoskedasticity, and that the second-stage estimators for the nonparametric additive component have an oracle efficiency property. Monte Carlo experiments are conducted to assess the finite sample performance of the proposed estimators. An application to a real data set is also illustrated.  相似文献   

7.
Principal component analysis is a popular dimension reduction technique often used to visualize high‐dimensional data structures. In genomics, this can involve millions of variables, but only tens to hundreds of observations. Theoretically, such extreme high dimensionality will cause biased or inconsistent eigenvector estimates, but in practice, the principal component scores are used for visualization with great success. In this paper, we explore when and why the classical principal component scores can be used to visualize structures in high‐dimensional data, even when there are few observations compared with the number of variables. Our argument is twofold: First, we argue that eigenvectors related to pervasive signals will have eigenvalues scaling linearly with the number of variables. Second, we prove that for linearly increasing eigenvalues, the sample component scores will be scaled and rotated versions of the population scores, asymptotically. Thus, the visual information of the sample scores will be unchanged, even though the sample eigenvectors are biased. In the case of pervasive signals, the principal component scores can be used to visualize the population structures, even in extreme high‐dimensional situations.  相似文献   

8.
In this paper, we study a nonparametric additive regression model suitable for a wide range of time series applications. Our model includes a periodic component, a deterministic time trend, various component functions of stochastic explanatory variables, and an AR(p) error process that accounts for serial correlation in the regression error. We propose an estimation procedure for the nonparametric component functions and the parameters of the error process based on smooth backfitting and quasimaximum likelihood methods. Our theory establishes convergence rates and the asymptotic normality of our estimators. Moreover, we are able to derive an oracle‐type result for the estimators of the AR parameters: Under fairly mild conditions, the limiting distribution of our parameter estimators is the same as when the nonparametric component functions are known. Finally, we illustrate our estimation procedure by applying it to a sample of climate and ozone data collected on the Antarctic Peninsula.  相似文献   

9.
This article considers statistical inference for partially linear varying-coefficient models when the responses are missing at random. We propose a profile least-squares estimator for the parametric component with complete-case data and show that the resulting estimator is asymptotically normal. To avoid to estimate the asymptotic covariance in establishing confidence region of the parametric component with the normal-approximation method, we define an empirical likelihood based statistic and show that its limiting distribution is chi-squared distribution. Then, the confidence regions of the parametric component with asymptotically correct coverage probabilities can be constructed by the result. To check the validity of the linear constraints on the parametric component, we construct a modified generalized likelihood ratio test statistic and demonstrate that it follows asymptotically chi-squared distribution under the null hypothesis. Then, we extend the generalized likelihood ratio technique to the context of missing data. Finally, some simulations are conducted to illustrate the proposed methods.  相似文献   

10.
This paper discusses the statistical properties of jump-diffusion processes and reports on parameter estimates for the DAX stock index and 48 German stocks with traded options. It is found that a Poisson-type jump-diffusion process can explain the high levels of kurtosis and skewness of observed return distributions of German stocks. Furthermore, we demonstrate that the return dynamics of the DAX include a statistically significant jump component except for a few sample subperiods. This finding is seen to be inconsistent with asset pricing models assuming that the jump component of the stock's return is unsystematic and diversifiable in the market portfolio.  相似文献   

11.
A simulation study of the binomial-logit model with correlated random effects is carried out based on the generalized linear mixed model (GLMM) methodology. Simulated data with various numbers of regression parameters and different values of the variance component are considered. The performance of approximate maximum likelihood (ML) and residual maximum likelihood (REML) estimators is evaluated. For a range of true parameter values, we report the average biases of estimators, the standard error of the average bias and the standard error of estimates over the simulations. In general, in terms of bias, the two methods do not show significant differences in estimating regression parameters. The REML estimation method is slightly better in reducing the bias of variance component estimates.  相似文献   

12.
In this article, we consider exact tests in panel data regression model with one-way and two-way error component for which no exact tests are available. Exact inferences using generalized p-values are obtained. When there are several groups of panel data, test for equal coefficients under one-way and two-way error component are derived.  相似文献   

13.
Importance measures are used to estimate the relative importance of components to system reliability. Phased mission systems (PMS) have many components working in several phases with different success criteria, and their component structural importance is distinct in different phases. Additionally, reliability parameters of components in PMS always have uncertainty in practice. Therefore, existing component importance measures based on either the partial derivative of system structure function or component structural importance may have difficulties in PMS importance analysis. This paper presents a simulation method to evaluate the component global importance for PMS based on the variance-based method and the Monte-Carlo method. To facilitate the practical use, we further discuss the correlation relationship between the component global importance and its possible influence factors, and present here a fitting model for evaluating component global importance. Finally, two examples are given to show that the fitting model displays quite reasonable component importance.  相似文献   

14.
In this paper, we study the estimation of the unbalanced panel data partially linear models with a one-way error components structure. A weighted semiparametric least squares estimator (WSLSE) is developed using polynomial spline approximation and least squares. We show that the WSLSE is asymptotically more efficient than the corresponding unweighted estimator for both parametric and nonparametric components of the model. This is a significant improvement over previous results in the literature which showed that the simply weighting technique can only improve the estimation of the parametric component. The asymptotic normalities of the proposed WSLSE are also established.  相似文献   

15.
We consider a multicomponent load-sharing system in which the failure rate of a given component depends on the set of working components at any given time. Such systems can arise in software reliability models and in multivariate failure-time models in biostatistics, for example. A load-share rule dictates how stress or load is redistributed to the surviving components after a component fails within the system. In this paper, we assume the load share rule is unknown and derive methods for statistical inference on load-share parameters based on maximum likelihood. Components with (individual) constant failure rates are observed in two environments: (1) the system load is distributed evenly among the working components, and (2) we assume only the load for each working component increases when other components in the system fail. Tests for these special load-share models are investigated.  相似文献   

16.
As a compromise between parametric regression and nonparametric regression, partially linear models are frequently used in statistical modelling. This article considers statistical inference for this semiparametric model when the linear covariate is measured with additive error and some additional linear restrictions on the parametric component are assumed to hold. We propose a restricted corrected profile least-squares estimator for the parametric component, and study the asymptotic normality of the estimator. To test hypothesis on the parametric component, we construct a Wald test statistic and obtain its limiting distribution. Some simulation studies are conducted to illustrate our approaches.  相似文献   

17.
Abstract. The partially linear in‐slide model (PLIM) is a useful tool to make econometric analyses and to normalize microarray data. In this article, by using series approximations and a least squares procedure, we propose a semiparametric least squares estimator (SLSE) for the parametric component and a series estimator for the non‐parametric component. Under weaker conditions than those imposed in the literature, we show that the SLSE is asymptotically normal and that the series estimator attains the optimal convergence rate of non‐parametric regression. We also investigate the estimating problem of the error variance. In addition, we propose a wild block bootstrap‐based test for the form of the non‐parametric component. Some simulation studies are conducted to illustrate the finite sample performance of the proposed procedure. An example of application on a set of economical data is also illustrated.  相似文献   

18.
Summary.  Suppose that we have m repeated measures on each subject, and we model the observation vectors with a finite mixture model.  We further assume that the repeated measures are conditionally independent. We present methods to estimate the shape of the component distributions along with various features of the component distributions such as the medians, means and variances. We make no distributional assumptions on the components; indeed, we allow different shapes for different components.  相似文献   

19.
Modeling cylindrical data, comprised of a linear component and a directional component, can be done using Fourier series expansions if we consider the conditional distribution of the linear component given the angular component. This paper presents the second order model which is a natural extension of the Mardia and Sutton (1978) first order model. This model can be parameterized either in polar or Cartesian coordinates, and allows for parameter estimation using standard multiple linear regression. Characteristic of the new model, how to compare the adequacy of the fit for first and second order models, and an example involving wind direction and temperature are presented.  相似文献   

20.
Point and interval estimators for the scale parameter of the component lifetime distribution of a k-component parallel system are obtained when the component lifetimes are assumed to be independently and identically exponentially distributed. We prove that the maximum likelihood estimator of the scale parameter based on progressively Type-II censored system lifetimes is unique and can be obtained by a fixed-point iteration procedure. In particular, we illustrate that the Newton–Raphson method does not converge for any initial value. Furthermore, exact confidence intervals are constructed by a transformation using normalized spacings and other component lifetime distributions including Weibull distribution are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号