首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nowadays, Bayesian methods are routinely used for estimating parameters of item response theory (IRT) models. However, the marginal likelihoods are still rarely used for comparing IRT models due to their complexity and a relatively high dimension of the model parameters. In this paper, we review Monte Carlo (MC) methods developed in the literature in recent years and provide a detailed development of how these methods are applied to the IRT models. In particular, we focus on the “best possible” implementation of these MC methods for the IRT models. These MC methods are used to compute the marginal likelihoods under the one-parameter IRT model with the logistic link (1PL model) and the two-parameter logistic IRT model (2PL model) for a real English Examination dataset. We further use the widely applicable information criterion (WAIC) and deviance information criterion (DIC) to compare the 1PL model and the 2PL model. The 2PL model is favored by all of these three Bayesian model comparison criteria for the English Examination data.  相似文献   

2.
We propose several diagnostic methods for checking the adequacy of marginal regression models for analyzing correlated binary data. We use a parametric marginal model based on latent variables and derive the projection (hat) matrix, Cook's distance, various residuals and Mahalanobis distance between the observed binary responses and the estimated probabilities for a cluster. Emphasized are several graphical methods including the simulated Q-Q plot, the half-normal probability plot with a simulated envelope, and the partial residual plot. The methods are illustrated with a real life example.  相似文献   

3.
When the unobservable Markov chain in a hidden Markov model is stationary the marginal distribution of the observations is a finite mixture with the number of terms equal to the number of the states of the Markov chain. This suggests the number of states of the unobservable Markov chain can be estimated by determining the number of mixture components in the marginal distribution. This paper presents new methods for estimating the number of states in a hidden Markov model, and coincidentally the unknown number of components in a finite mixture, based on penalized quasi‐likelihood and generalized quasi‐likelihood ratio methods constructed from the marginal distribution. The procedures advocated are simple to calculate, and results obtained in empirical applications indicate that they are as effective as current available methods based on the full likelihood. Under fairly general regularity conditions, the methods proposed generate strongly consistent estimates of the unknown number of states or components.  相似文献   

4.
Generalized linear models with random effects and/or serial dependence are commonly used to analyze longitudinal data. However, the computation and interpretation of marginal covariate effects can be difficult. This led Heagerty (1999, 2002) to propose models for longitudinal binary data in which a logistic regression is first used to explain the average marginal response. The model is then completed by introducing a conditional regression that allows for the longitudinal, within‐subject, dependence, either via random effects or regressing on previous responses. In this paper, the authors extend the work of Heagerty to handle multivariate longitudinal binary response data using a triple of regression models that directly model the marginal mean response while taking into account dependence across time and across responses. Markov Chain Monte Carlo methods are used for inference. Data from the Iowa Youth and Families Project are used to illustrate the methods.  相似文献   

5.
The varying-coefficient model is an important nonparametric statistical model since it allows appreciable flexibility on the structure of fitted model. For ultra-high dimensional heterogeneous data it is very necessary to examine how the effects of covariates vary with exposure variables at different quantile level of interest. In this paper, we extended the marginal screening methods to examine and select variables by ranking a measure of nonparametric marginal contributions of each covariate given the exposure variable. Spline approximations are employed to model marginal effects and select the set of active variables in quantile-adaptive framework. This ensures the sure screening property in quantile-adaptive varying-coefficient model. Numerical studies demonstrate that the proposed procedure works well for heteroscedastic data.  相似文献   

6.
When confronted with multiple covariates and a response variable, analysts sometimes apply a variable‐selection algorithm to the covariate‐response data to identify a subset of covariates potentially associated with the response, and then wish to make inferences about parameters in a model for the marginal association between the selected covariates and the response. If an independent data set were available, the parameters of interest could be estimated by using standard inference methods to fit the postulated marginal model to the independent data set. However, when applied to the same data set used by the variable selector, standard (“naive”) methods can lead to distorted inferences. The authors develop testing and interval estimation methods for parameters reflecting the marginal association between the selected covariates and response variable, based on the same data set used for variable selection. They provide theoretical justification for the proposed methods, present results to guide their implementation, and use simulations to assess and compare their performance to a sample‐splitting approach. The methods are illustrated with data from a recent AIDS study. The Canadian Journal of Statistics 37: 625–644; 2009 © 2009 Statistical Society of Canada  相似文献   

7.
The present work proposes a new integer valued autoregressive model with Poisson marginal distribution based on the mixing Pegram and dependent Bernoulli thinning operators. Properties of the model are discussed. We consider several methods for estimating the unknown parameters of the model. Also, the classical and Bayesian approaches are used for forecasting. Simulations are performed for the performance of these estimators and forecasting methods. Finally, the analysis of two real data has been presented for illustrative purposes.  相似文献   

8.
Summary.  We introduce a flexible marginal modelling approach for statistical inference for clustered and longitudinal data under minimal assumptions. This estimated estimating equations approach is semiparametric and the proposed models are fitted by quasi-likelihood regression, where the unknown marginal means are a function of the fixed effects linear predictor with unknown smooth link, and variance–covariance is an unknown smooth function of the marginal means. We propose to estimate the nonparametric link and variance–covariance functions via smoothing methods, whereas the regression parameters are obtained via the estimated estimating equations. These are score equations that contain nonparametric function estimates. The proposed estimated estimating equations approach is motivated by its flexibility and easy implementation. Moreover, if data follow a generalized linear mixed model, with either a specified or an unspecified distribution of random effects and link function, the model proposed emerges as the corresponding marginal (population-average) version and can be used to obtain inference for the fixed effects in the underlying generalized linear mixed model, without the need to specify any other components of this generalized linear mixed model. Among marginal models, the estimated estimating equations approach provides a flexible alternative to modelling with generalized estimating equations. Applications of estimated estimating equations include diagnostics and link selection. The asymptotic distribution of the proposed estimators for the model parameters is derived, enabling statistical inference. Practical illustrations include Poisson modelling of repeated epileptic seizure counts and simulations for clustered binomial responses.  相似文献   

9.
A fully parametric first-order autoregressive (AR(1)) model is proposed to analyse binary longitudinal data. By using a discretized version of a copula, the modelling approach allows one to construct separate models for the marginal response and for the dependence between adjacent responses. In particular, the transition model that is focused on discretizes the Gaussian copula in such a way that the marginal is a Bernoulli distribution. A probit link is used to take into account concomitant information in the behaviour of the underlying marginal distribution. Fixed and time-varying covariates can be included in the model. The method is simple and is a natural extension of the AR(1) model for Gaussian series. Since the approach put forward is likelihood-based, it allows interpretations and inferences to be made that are not possible with semi-parametric approaches such as those based on generalized estimating equations. Data from a study designed to reduce the exposure of children to the sun are used to illustrate the methods.  相似文献   

10.
Threshold methods for multivariate extreme values are based on the use of asymptotically justified approximations of both the marginal distributions and the dependence structure in the joint tail. Models derived from these approximations are fitted to a region of the observed joint tail which is determined by suitably chosen high thresholds. A drawback of the existing methods is the necessity for the same thresholds to be taken for the convergence of both marginal and dependence aspects, which can result in inefficient estimation. In this paper an extension of the existing models, which removes this constraint, is proposed. The resulting model is semi-parametric and requires computationally intensive techniques for likelihood evaluation. The methods are illustrated using a coastal engineering application.  相似文献   

11.
This paper deals with the regression analysis of failure time data when there are censoring and multiple types of failures. We propose a semiparametric generalization of a parametric mixture model of Larson & Dinse (1985), for which the marginal probabilities of the various failure types are logistic functions of the covariates. Given the type of failure, the conditional distribution of the time to failure follows a proportional hazards model. A marginal like lihood approach to estimating regression parameters is suggested, whereby the baseline hazard functions are eliminated as nuisance parameters. The Monte Carlo method is used to approximate the marginal likelihood; the resulting function is maximized easily using existing software. Some guidelines for choosing the number of Monte Carlo replications are given. Fixing the regression parameters at their estimated values, the full likelihood is maximized via an EM algorithm to estimate the baseline survivor functions. The methods suggested are illustrated using the Stanford heart transplant data.  相似文献   

12.
Using local kappa coefficients, we develop a method to assess the agreement between two discrete survival times that are measured on the same subject by different raters or methods. We model the marginal distributions for the two event times and local kappa coefficients in terms of covariates. An estimating equation is used for modeling the marginal distributions and a pseudo-likelihood procedure is used to estimate the parameters in the kappa model. The performance of the estimation procedure is examined through simulations. The proposed method can be extended to multivariate discrete survival distributions.  相似文献   

13.
Normalized random measures with independent increments are a general, tractable class of nonparametric prior. This paper describes sequential Monte Carlo methods for both conjugate and non-conjugate nonparametric mixture models with these priors. A simulation study is used to compare the efficiency of the different algorithms for density estimation and comparisons made with Markov chain Monte Carlo methods. The SMC methods are further illustrated by applications to dynamically fitting a nonparametric stochastic volatility model and to estimation of the marginal likelihood in a goodness-of-fit testing example.  相似文献   

14.
This paper deals with the analysis of multivariate survival data from a Bayesian perspective using Markov-chain Monte Carlo methods. The Metropolis along with the Gibbs algorithm is used to calculate some of the marginal posterior distributions. A multivariate survival model is proposed, since survival times within the same group are correlated as a consequence of a frailty random block effect. The conditional proportional-hazards model of Clayton and Cuzick is used with a martingale structured prior process (Arjas and Gasbarra) for the discretized baseline hazard. Besides the calculation of the marginal posterior distributions of the parameters of interest, this paper presents some Bayesian EDA diagnostic techniques to detect model adequacy. The methodology is exemplified with kidney infection data where the times to infections within the same patients are expected to be correlated.  相似文献   

15.
16.
Monte Carlo simulation methods are increasingly being used to evaluate the property of statistical estimators in a variety of settings. The utility of these methods depends upon the existence of an appropriate data-generating process. Observational studies are increasingly being used to estimate the effects of exposures and interventions on outcomes. Conventional regression models allow for the estimation of conditional or adjusted estimates of treatment effects. There is an increasing interest in statistical methods for estimating marginal or average treatment effects. However, in many settings, conditional treatment effects can differ from marginal treatment effects. Therefore, existing data-generating processes for conditional treatment effects are of little use in assessing the performance of methods for estimating marginal treatment effects. In the current study, we describe and evaluate the performance of two different data-generation processes for generating data with a specified marginal odds ratio. The first process is based upon computing Taylor Series expansions of the probabilities of success for treated and untreated subjects. The expansions are then integrated over the distribution of the random variables to determine the marginal probabilities of success for treated and untreated subjects. The second process is based upon an iterative process of evaluating marginal odds ratios using Monte Carlo integration. The second method was found to be computationally simpler and to have superior performance compared to the first method.  相似文献   

17.
In this paper we present a parsimonious model for the analysis of underreported Poisson count data. In contrast to previously developed methods, we are able to derive analytic expressions for the key marginal posterior distributions that are of interest. The usefulness of this model is explored via a re-examination of previously analysed data covering the purchasing of port wine (Ramos, 1999).  相似文献   

18.
For the analysis of square contingency tables with nominal categories, this paper proposes two kinds of models that indicate the structure of marginal inhomogeneity. One model states that the absolute values of log odds of the row marginal probability to the corresponding column marginal probability for each category i are constant for every i. The other model states that, on the condition that an observation falls in one of the off-diagonal cells in the square table, the absolute values of log odds of the conditional row marginal probability to the corresponding conditional column marginal probability for each category i are constant for every i. These models are used when the marginal homogeneity model does not hold, and the values of parameters in the models are useful for seeing the degree of departure from marginal homogeneity for the data on a nominal scale. Examples are given.  相似文献   

19.
The use of bivariate distributions plays a fundamental role in survival and reliability studies. In this paper, we consider a location scale model for bivariate survival times based on the proposal of a copula to model the dependence of bivariate survival data. For the proposed model, we consider inferential procedures based on maximum likelihood. Gains in efficiency from bivariate models are also examined in the censored data setting. For different parameter settings, sample sizes and censoring percentages, various simulation studies are performed and compared to the performance of the bivariate regression model for matched paired survival data. Sensitivity analysis methods such as local and total influence are presented and derived under three perturbation schemes. The martingale marginal and the deviance marginal residual measures are used to check the adequacy of the model. Furthermore, we propose a new measure which we call modified deviance component residual. The methodology in the paper is illustrated on a lifetime data set for kidney patients.  相似文献   

20.
Recurrent events data with a terminal event often arise in many longitudinal studies. Most of existing models assume multiplicative covariate effects and model the conditional recurrent event rate given survival. In this article, we propose a marginal additive rates model for recurrent events with a terminal event, and develop two procedures for estimating the model parameters. The asymptotic properties of the resulting estimators are established. In addition, some numerical procedures are presented for model checking. The finite-sample behavior of the proposed methods is examined through simulation studies, and an application to a bladder cancer study is also illustrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号