首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The continuous extension of a discrete random variable is amongst the computational methods used for estimation of multivariate normal copula-based models with discrete margins. Its advantage is that the likelihood can be derived conveniently under the theory for copula models with continuous margins, but there has not been a clear analysis of the adequacy of this method. We investigate the asymptotic and small-sample efficiency of two variants of the method for estimating the multivariate normal copula with univariate binary, Poisson, and negative binomial regressions, and show that they lead to biased estimates for the latent correlations, and the univariate marginal parameters that are not regression coefficients. We implement a maximum simulated likelihood method, which is based on evaluating the multidimensional integrals of the likelihood with randomized quasi-Monte Carlo methods. Asymptotic and small-sample efficiency calculations show that our method is nearly as efficient as maximum likelihood for fully specified multivariate normal copula-based models. An illustrative example is given to show the use of our simulated likelihood method.  相似文献   

2.
Asymptotic Normality in Mixtures of Power Series Distributions   总被引:1,自引:0,他引:1  
Abstract.  The problem of estimating the individual probabilities of a discrete distribution is considered. The true distribution of the independent observations is a mixture of a family of power series distributions. First, we ensure identifiability of the mixing distribution assuming mild conditions. Next, the mixing distribution is estimated by non-parametric maximum likelihood and an estimator for individual probabilities is obtained from the corresponding marginal mixture density. We establish asymptotic normality for the estimator of individual probabilities by showing that, under certain conditions, the difference between this estimator and the empirical proportions is asymptotically negligible. Our framework includes Poisson, negative binomial and logarithmic series as well as binomial mixture models. Simulations highlight the benefit in achieving normality when using the proposed marginal mixture density approach instead of the empirical one, especially for small sample sizes and/or when interest is in the tail areas. A real data example is given to illustrate the use of the methodology.  相似文献   

3.
While the literature on multivariate models for continuous data flourishes, there is a lack of models for multivariate counts. We aim to contribute to this framework by extending the well known class of univariate hidden Markov models to the multidimensional case, by introducing multivariate Poisson hidden Markov models. Each state of the extended model is associated with a different multivariate discrete distribution. We consider different distributions with Poisson marginals, starting from the multivariate Poisson distribution and then extending to copula based distributions to allow flexible dependence structures. An EM type algorithm is developed for maximum likelihood estimation. A real data application is presented to illustrate the usefulness of the proposed models. In particular, we apply the models to the occurrence of strong earthquakes (surface wave magnitude ≥5), in three seismogenic subregions in the broad region of the North Aegean Sea for the time period from 1 January 1981 to 31 December 2008. Earthquakes occurring in one subregion may trigger events in adjacent ones and hence the observed time series of events are cross‐correlated. It is evident from the results that the three subregions interact with each other at times differing by up to a few months. This migration of seismic activity is captured by the model as a transition to a state of higher seismicity.  相似文献   

4.
A discrete probability model always gets truncated during the sampling process and the point of truncation depends upon the sample size. Also, the generalized Poisson distribution cannot be used with full justification when the second parameter is negative. To avoid these problems a truncated generalized Poisson distribution is defined and studied. Estimation of its parameters by moments method, maximum likelihood method and a mixed method are considered. Some examples are given to illustrate the effect on the parameters’ estimates when a non-truncated GPD is used instead of a truncated GPD.  相似文献   

5.
The present article obtains the point estimators of the exponentiated-Weibull parameters when all the three parameters of the distribution are unknown. Maximum likelihood estimator generalized maximum likelihood estimator and Bayes estimators are proposed for three-parameter exponentiated-Weibull distribution when available sample is type-II censored. Independent non-informative types of priors are considered for the unknown parameters to develop generalized maximum likelihood estimator and Bayes estimators. Although the proposed estimators cannot be expressed in nice closed forms, these can be easily obtained through the use of appropriate numerical techniques. The performances of these estimators are studied on the basis of their risks, computed separately under LINEX loss and squared error loss functions through Monte-Carlo simulation technique. An example is also considered to illustrate the estimators.  相似文献   

6.
The family of weighted Poisson distributions offers great flexibility in modeling discrete data due to its potential to capture over/under-dispersion by an appropriate selection of the weight function. In this paper, we introduce a flexible weighted Poisson distribution and further study its properties by using it in the context of cure rate modeling under a competing cause scenario. A special case of the new distribution is the COM-Poisson distribution which in turn encompasses the Bernoulli, Poisson, and geometric distributions; hence, many of the well-studied cure rate models may be seen as special cases of the proposed model. We focus on the estimation, through the maximum likelihood method, of the cured proportion and the properties of the failure time of the susceptibles/non cured individuals; a profile likelihood approach is also adopted for estimating the parameters of the weighted Poisson distribution. A Monte Carlo simulation study demonstrates the accuracy of the proposed inferential method. Finally, as an illustration, we fit the proposed model to a cutaneous melanoma data set.  相似文献   

7.
The paper generalizes the univariate discrete exponential family of distributions to the multivariate situation, and this generalization includes the multivariate power series distributions, the multivariate Lagrangian distributions, and the modified multivariate power-series distributions. This provides a unified approach for the study of these three classes of distributions. We obtain recurrence relations for moments and cumulants, and the maximum likelihood estimation for the discrete exponential family. These results are applied to some multivariate discrete distributions like the Lagrangian Poisson, Lagrangian (negative) multinomial, logarithmic series distributions and multivariate Lagrangian negative binomial distribution.  相似文献   

8.
This paper explores the asymptotic distribution of the restricted maximum likelihood estimator of the variance components in a general mixed model. Restricting attention to hierarchical models, central limit theorems are obtained using elementary arguments with only mild conditions on the covariates in the fixed part of the model and without having to assume that the data are either normally or spherically symmetrically distributed. Further, the REML and maximum likelihood estimators are shown to be asymptotically equivalent in this general framework, and the asymptotic distribution of the weighted least squares estimator (based on the REML estimator) of the fixed effect parameters is derived.  相似文献   

9.
In this paper we present Bayesian analysis of finite mixtures of multivariate Poisson distributions with an unknown number of components. The multivariate Poisson distribution can be regarded as the discrete counterpart of the multivariate normal distribution, which is suitable for modelling multivariate count data. Mixtures of multivariate Poisson distributions allow for overdispersion and for negative correlations between variables. To perform Bayesian analysis of these models we adopt a reversible jump Markov chain Monte Carlo (MCMC) algorithm with birth and death moves for updating the number of components. We present results obtained from applying our modelling approach to simulated and real data. Furthermore, we apply our approach to a problem in multivariate disease mapping, namely joint modelling of diseases with correlated counts.  相似文献   

10.
Linear mixed models are widely used when multiple correlated measurements are made on each unit of interest. In many applications, the units may form several distinct clusters, and such heterogeneity can be more appropriately modelled by a finite mixture linear mixed model. The classical estimation approach, in which both the random effects and the error parts are assumed to follow normal distribution, is sensitive to outliers, and failure to accommodate outliers may greatly jeopardize the model estimation and inference. We propose a new mixture linear mixed model using multivariate t distribution. For each mixture component, we assume the response and the random effects jointly follow a multivariate t distribution, to conveniently robustify the estimation procedure. An efficient expectation conditional maximization algorithm is developed for conducting maximum likelihood estimation. The degrees of freedom parameters of the t distributions are chosen data adaptively, for achieving flexible trade-off between estimation robustness and efficiency. Simulation studies and an application on analysing lung growth longitudinal data showcase the efficacy of the proposed approach.  相似文献   

11.
Algorithms     
Abstract

The main reason for the limited use of multivariate discrete models is the difficulty in calculating the required probabilities. The task is usually undertaken via recursive relationships which become quite computationally demanding for high dimensions and large values. The present paper discusses efficient algorithms that make use of the recurrence relationships in a manner that reduces the computational effort and thus allow for easy and cheap calculation of the probabilities. The most common multivariate discrete distribution, the multivariate Poisson distribution is treated. Real data problems are provided to motivate the use of the proposed strategies. Extensions of our results are discussed. It is shown that probabilities, for a large family of multivariate distributions, can be computed efficiently via our algorithms.  相似文献   

12.
This paper synthesizes a global approach to both Bayesian and likelihood treatments of the estimation of the parameters of a hidden Markov model in the cases of normal and Poisson distributions. The first step of this global method is to construct a non-informative prior based on a reparameterization of the model; this prior is to be considered as a penalizing and bounding factor from a likelihood point of view. The second step takes advantage of the special structure of the posterior distribution to build up a simple Gibbs algorithm. The maximum likelihood estimator is then obtained by an iterative procedure replicating the original sample until the corresponding Bayes posterior expectation stabilizes on a local maximum of the original likelihood function.  相似文献   

13.
In this paper we introduce and study two new families of statistics for the problem of testing linear combinations of the parameters in logistic regression models. These families are based on the phi-divergence measures. One of them includes the classical likelihood ratio statistic and the other the classical Pearson's statistic for this problem. It is interesting to note that the vector of unknown parameters, in the two new families of phi-divergence statistics considered in this paper, is estimated using the minimum phi-divergence estimator instead of the maximum likelihood estimator. Minimum phi-divergence estimators are a natural extension of the maximum likelihood estimator.  相似文献   

14.
The penalized maximum likelihood estimator (PMLE) has been widely used for variable selection in high-dimensional data. Various penalty functions have been employed for this purpose, e.g., Lasso, weighted Lasso, or smoothly clipped absolute deviations. However, the PMLE can be very sensitive to outliers in the data, especially to outliers in the covariates (leverage points). In order to overcome this disadvantage, the usage of the penalized maximum trimmed likelihood estimator (PMTLE) is proposed to estimate the unknown parameters in a robust way. The computation of the PMTLE takes advantage of the same technology as used for PMLE but here the estimation is based on subsamples only. The breakdown point properties of the PMTLE are discussed using the notion of $d$ -fullness. The performance of the proposed estimator is evaluated in a simulation study for the classical multiple linear and Poisson linear regression models.  相似文献   

15.
The authors consider the estimation of linear functions of a multivariate parameter under orthant restrictions. These restrictions are considered both for location models and for the Poisson distribution. For these models, situations are characterized for which the restricted maximum likelihood estimator dominates the unrestricted one for the estimation of any linear function of the parameter. The results obtained point directly to the importance of the dimension of the parameter space, the central direction of the cone and its vertex in these cases. Special attention is given to examples, such as the one‐way analysis of variance, where the estimation of individual interesting linear functions of the parameter, as the coordinates and the differences between them, is also treated.  相似文献   

16.
Dependent multivariate count data occur in several research studies. These data can be modelled by a multivariate Poisson or Negative binomial distribution constructed using copulas. However, when some of the counts are inflated, that is, the number of observations in some cells are much larger than other cells, then the copula-based multivariate Poisson (or Negative binomial) distribution may not fit well and it is not an appropriate statistical model for the data. There is a need to modify or adjust the multivariate distribution to account for the inflated frequencies. In this article, we consider the situation where the frequencies of two cells are higher compared to the other cells and develop a doubly inflated multivariate Poisson distribution function using multivariate Gaussian copula. We also discuss procedures for regression on covariates for the doubly inflated multivariate count data. For illustrating the proposed methodologies, we present real data containing bivariate count observations with inflations in two cells. Several models and linear predictors with log link functions are considered, and we discuss maximum likelihood estimation to estimate unknown parameters of the models.  相似文献   

17.
A generalization of the classical random sampling scheme is suggested. Based on the proposed generalization one can derive many new minimum variance unbiased estimators for probabilities, as well as for other functions of unknown parameters, for the multivariate Pólya, the multivariate negative Pólya, the multinomial, the multivariate hypergeometric, the multivariate Poisson, and the Wishart probability distributions.  相似文献   

18.
A nonparametric method based on the empirical likelihood is proposed to detect the change-point in the coefficient of linear regression models. The empirical likelihood ratio test statistic is proved to have the same asymptotic null distribution as that with classical parametric likelihood. Under some mild conditions, the maximum empirical likelihood change-point estimator is also shown to be consistent. The simulation results show the sensitivity and robustness of the proposed approach. The method is applied to some real datasets to illustrate the effectiveness.  相似文献   

19.
Using the Poisson approximation to the Binomial distribution, we construct an approximate maximum likelihood estimator (MLE) for a class of chain binomial models. Our estimator proves to have properties which may make it preferable to the exact WLE.  相似文献   

20.
An extended version of the compound Poisson distribution is obtained by compounding the Poisson distribution with the generalized Lindley distribution. Estimation of the parameters is discussed using the method of moments and maximum likelihood estimators. Examples are given of the fitting of this distribution to data, and the fit is compared with that obtained using other distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号