首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the researchers attempt to introduce a new generalization of the Weibull-geometric distribution. The failure rate function of the new model is found to be increasing, decreasing, upside-down bathtub, and bathtub-shaped. The researchers obtained the new model by compounding Weibull distribution and discrete generalized exponential distribution of a second type, which is a generalization of the geometric distribution. The new introduced model contains some previously known lifetime distributions as well as a new one. Some basic distributional properties and moments of the new model are discussed. Estimation of the parameters is illustrated and the model with two known real data sets is examined.  相似文献   

2.
In this paper, a discrete counterpart of the general class of continuous beta-G distributions is introduced. A discrete analog of the beta generalized exponential distribution of Barreto-Souza et al. [2], as an important special case of the proposed class, is studied. This new distribution contains some previously known discrete distributions as well as two new models. The hazard rate function of the new model can be increasing, decreasing, bathtub-shaped and upside-down bathtub. Some distributional and moment properties of the new distribution as well as its order statistics are discussed. Estimation of the parameters is illustrated using the maximum likelihood method and, finally, the model with a real data set is examined.  相似文献   

3.
A number of models have been proposed in the literature to model data reflecting bathtub-shaped hazard rate functions. Mixture distributions provide the obvious choice for modelling such data sets but these contain too many parameters and hamper the accuracy of the inferential procedures particularly when the data are meagre. Recently, a few distributions have been proposed which are simply generalizations of the two-parameter Weibull model and are capable of producing bathtub behaviour of the hazard rate function. The Weibull extension and the modified Weibull models are two such families. This study focuses on comparing these two distributions for data sets exhibiting bathtub shape of the hazard rate. Bayesian tools are preferred due to their wide range of applicability in various nested and non-nested model comparison problems. Real data illustrations are provided so that a particular model can be recommended based on various tools of model comparison discussed in the paper.  相似文献   

4.
Likelihood ratio type test statistic and Schwarz information criterion statistics are proposed for detecting possible bathtub-shaped changes in the parameter in a sequence of exponential distributions. The asymptotic distribution of likelihood ratio type statistic under the null hypothesis and the testing procedure based on Schwarz information criterion are derived. Numerical critical values and powers of two methods are tabulated for certain selected values of the parameters. The tests are applied to detect the change points for the predator data and Stanford heart transplant data.  相似文献   

5.
The mean residual life (MRL), or “life expectancy”, encapsulates the entire residual life of the product, and is thus of great interest in many fields, particularly those concerned with warranties, replacement policies, burn-in, and insurance. Estimating the profile of the MRL, let alone constructing confidence bands for it, is a difficult problem. We explore several approaches to estimating the variation in the profile of the mean residual life function, with special attention to a bathtub shaped failure distribution, called the modified Weibull distribution, which has generated considerable interest in reliability engineering. Parametric and non-parametric confidence bands are compared, and the theoretical coverage probabilities verified by simulation. An example application investigating the effectiveness of repairs is given, and possible further research discussed.  相似文献   

6.
Two statistics are proposed for testing for the exponential distribution against monotone failure rate alternatives when ran-domly right censored data are available. One of them is a general-ization of the Billmann, Antle and Bain test based on the MLE of the shape parameter of the Weibull distribution. The second has the advantage of being given in closed form. For this test the asymptotic null distribution is given. Consistency of the two tests is proved starting from an expected value inequality characterizing monotone failure rate.  相似文献   

7.
A model for the lifetime of a system is considered in which the system is susceptible to simultaneous failures of two or more components, the failures having a common external cause. Three sets of discrete failure data from the US nuclear industry are examined to motivate and illustrate the model derivation: they are for motor-operated valves, cooling fans and emergency diesel generators. To achieve target reliabilities, these components must be placed in systems that have built-in redundancy. Consequently, multiple failures due to a common cause are critical in the risk of core meltdown. Vesely has offered a simple methodology for inference, called the binomial failure rate model: external events are assumed to be governed by a Poisson shock model in which resulting shocks kill X out of m system components, X having a binomial distribution with parameters ( m , p ), 0< p <1. In many applications the binomial failure rate model fits failure data poorly, and the model has not typically been applied to probabilistic risk assessments in the nuclear industry. We introduce a realistic generalization of the binomial failure rate model by assigning a mixing distribution to the unknown parameter p . The distribution is generally identifiable, and its unique nonparametric maximum likelihood estimator can be obtained by using a simple iterative scheme.  相似文献   

8.
9.
ABSTRACT

In this paper, we introduce a competing risks model for the lifetimes of components that differs from the classical competing risks models by the fact that it is not directly observable which component has failed. We propose two statistical methods for estimating the reliability of components from failure data on a system. Our methods are applied to simulated failure data, in order to illustrate the performance of the methods.  相似文献   

10.
This paper discusses the analysis of interval-censored failure time data, which has recently attracted a great amount of attention (Li and Pu, Lifetime Data Anal 9:57–70, 2003; Sun, The statistical analysis of interval-censored data, 2006; Tian and Cai, Biometrika 93(2):329–342, 2006; Zhang et al., Can J Stat 33:61–70, 2005). Interval-censored data mean that the survival time of interest is observed only to belong to an interval and they occur in many fields including clinical trials, demographical studies, medical follow-up studies, public health studies and tumorgenicity experiments. A major difficulty with the analysis of interval-censored data is that one has to deal with a censoring mechanism that involves two related variables. For the inference, we present a transformation approach that transforms general interval-censored data into current status data, for which one only needs to deal with one censoring variable and the inference is thus much easy. We apply this general idea to regression analysis of interval-censored data using the additive hazards model and numerical studies indicate that the method performs well for practical situations. An illustrative example is provided.  相似文献   

11.
12.
Previously, Bayesian anomaly was reported for estimating reliability when subsystem failure data and system failure data were obtained from the same time period. As a result, a practical method for mitigating Bayesian anomaly was developed. In the first part of this paper, however, we show that the Bayesian anomaly can be avoided as long as the same failure information is incorporated in the model. In the second part of this paper, we consider a problem of estimating the Bayesian reliability when the failure count data on subsystems and systems are obtained from the same time period. We show that Bayesian anomaly does not exist when using the multinomial distribution with the Dirichlet prior distribution. A numerical example is given to compare the proposed method with the previous methods.  相似文献   

13.
This study considers the exact hypothesis test for the shape parameter of a new two-parameter distribution with the shape of a bathtub or increasing failure rate function under type II progressive censoring with random removals, where the number of units removed at each failure time follows a binomial or a uniform distribution. Several test statistics are proposed and one numerical example is provided to illustrate the proposed hypothesis test for the shape parameter. Finally, a simulation study is performed to compare the power performances of all proposed test statistics. We concluded that the test statistic w 1 is more attractive than other methods as it has better performance than other test statistics for most cases based on the criteria of maximum power.  相似文献   

14.
In this paper, a system of five components is studied; one of these components is a bridge network component. Each of these components has a non-constant failure rate. The system components have linear failure rate lifetime distribution. The given system is improved by using three methods: reduction, warm standby with perfect switch and warm standby with imperfect switch. The reliability equivalence factors of the bridge structure system are obtained. The γ-fractiles are obtained to compare the original system with these improved systems. Finally, we present numerical results to show the difference between these methods.  相似文献   

15.
ABSTRACT

In this article, a two-parameter generalized inverse Lindley distribution capable of modeling a upside-down bathtub-shaped hazard rate function is introduced. Some statistical properties of proposed distribution are explicitly derived here. The method of maximum likelihood, least square, and maximum product spacings are used for estimating the unknown model parameters and also compared through the simulation study. The approximate confidence intervals, based on a normal and a log-normal approximation, are also computed. Two algorithms are proposed for generating a random sample from the proposed distribution. A real data set is modeled to illustrate its applicability, and it is shown that our distribution fits much better than some other existing inverse distributions.  相似文献   

16.
17.
The paper deals with discrete-time regression models to analyze multistate—multiepisode models for event history data or failure time data collected in follow-up studies, retrospective studies, or longitudinal panels. The models are applicable if the events are not dated exactly but only a time interval is recorded. The models include individual specific parameters to account for unobserved heterogeneity. The explantory variables may be time-varying and random with distributions depending on the observed history of the process. Different estimation procedures are considered: Estimation of structural as well as individual specific parameters by maximization of a joint likelihood function, estimation of the structural parameters by maximization of a conditional likelihood function conditioning on a set of sufficient statistics for the individual specific parameters, and estimation of the structural parameters by maximization of a marginal likelihood function assuming that the individual specific parameters follow a distribution. The advantages and limitations of the different approaches are discussed.  相似文献   

18.
In this paper, we develop simple non-parametric test based on U-statistics for testing constant failure rate against IFR, IFRA, DMRL, NBU and NBUE alternatives. The asymptotic properties of the test statistics are studied. In particular, the test statistics are shown to be asymptotically normal and consistent against the relevant alternatives. Some numerical results are presented to demonstrate the performance of the proposed tests.  相似文献   

19.
Cox's seminal 1972 paper on regression methods for possibly censored failure time data popularized the use of time to an event as a primary response in prospective studies. But one key assumption of this and other regression methods is that observations are independent of one another. In many problems, failure times are clustered into small groups where outcomes within a group are correlated. Examples include failure times for two eyes from one person or for members of the same family.This paper presents a survey of models for multivariate failure time data. Two distinct classes of models are considered: frailty and marginal models. In a frailty model, the correlation is assumed to derive from latent variables (frailties) common to observations from the same cluster. Regression models are formulated for the conditional failure time distribution given the frailties. Alternatively, marginal models describe the marginal failure time distribution of each response while separately modelling the association among responses from the same cluster.We focus on recent extensions of the proportional hazards model for multivariate failure time data. Model formulation, parameter interpretation and estimation procedures are considered.  相似文献   

20.
In this paper, we consider the Bayesian analysis of competing risks data, when the data are partially complete in both time and type of failures. It is assumed that the latent cause of failures have independent Weibull distributions with the common shape parameter, but different scale parameters. When the shape parameter is known, it is assumed that the scale parameters have Beta–Gamma priors. In this case, the Bayes estimates and the associated credible intervals can be obtained in explicit forms. When the shape parameter is also unknown, it is assumed that it has a very flexible log-concave prior density functions. When the common shape parameter is unknown, the Bayes estimates of the unknown parameters and the associated credible intervals cannot be obtained in explicit forms. We propose to use Markov Chain Monte Carlo sampling technique to compute Bayes estimates and also to compute associated credible intervals. We further consider the case when the covariates are also present. The analysis of two competing risks data sets, one with covariates and the other without covariates, have been performed for illustrative purposes. It is observed that the proposed model is very flexible, and the method is very easy to implement in practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号