首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A precision matrix is an important parameter of interests because its elements describe useful association information among multiple variables, which has a wide variety of applications. For example, it is used for inferring gene regulation networks in genomic studies and stock association networks in financial studies. However, in many cases, the precision matrix needs to be robustly estimated due to the presence of outliers. We propose estimating a sparse scaled precision matrix via weighted median regression with regularization. Our weighted median regression approach is consistent under various distributional assumptions including multivariate t‐ or contaminated Gaussian distributions. This fact is illustrated with simulation studies and a real data analysis with monthly stock return data. The Canadian Journal of Statistics 46: 265–278; 2018 © 2018 Statistical Society of Canada  相似文献   

2.
A weighted spatial median is proposed for the multivariate one-sample location problem with clustered data. Its limiting distribution is derived under mild conditions (no moment assumptions) and it is shown to be multivariate normal. Asymptotic as well as finite sample efficiencies and breakdown properties are considered, and the theoretical results are supplied with illustrative examples. It turns out that there is a potential for meaningful gains in estimation efficiency: the weighted spatial median has superior efficiency to the unweighted spatial median particularly when the cluster sizes are widely disparate and in the presence of strong intracluster correlation. The unweighted spatial median for clustered data was considered earlier by Nevalainen et al. (Can J Statist, in press, 2007). The proposed weighted estimators provide companion estimates to the weighted affine invariant sign test proposed recently by Larocque et al. (Biometrika, in press, 2007). An affine equivariant weighted spatial median is discussed in parallel.  相似文献   

3.
In this article, the authors consider a semiparametric additive hazards regression model for right‐censored data that allows some censoring indicators to be missing at random. They develop a class of estimating equations and use an inverse probability weighted approach to estimate the regression parameters. Nonparametric smoothing techniques are employed to estimate the probability of non‐missingness and the conditional probability of an uncensored observation. The asymptotic properties of the resulting estimators are derived. Simulation studies show that the proposed estimators perform well. They motivate and illustrate their methods with data from a brain cancer clinical trial. The Canadian Journal of Statistics 38: 333–351; 2010 © 2010 Statistical Society of Canada  相似文献   

4.
This paper introduces a median estimator of the logistic regression parameters. It is defined as the classical L1L1-estimator applied to continuous data Z1,…,ZnZ1,,Zn obtained by a statistical smoothing of the original binary logistic regression observations Y1,…,YnY1,,Yn. Consistency and asymptotic normality of this estimator are proved. A method called enhancement is introduced which in some cases increases the efficiency of this estimator. Sensitivity to contaminations and leverage points is studied by simulations and compared in this manner with the sensitivity of some robust estimators previously introduced to the logistic regression. The new estimator appears to be more robust for larger sample sizes and higher levels of contamination.  相似文献   

5.
Necessary and sufficient conditions for weak and strong convergence are derived for the weighted version of a general process under random censoring. To be more explicit, this means that for this process complete analogues are obtained of the Chibisov-O'Reilly theorem, the Lai-Wellner Glivenko-Cantelli theorem, and the James law of the iterated logarithm for the empirical process. The process contains as special cases the so-called basic martingale, the empirical cumulative hazard process, and the product-limit process. As a tool we derive a Kiefer-process-type approximation of our process, which may be of independent interest.  相似文献   

6.
In this article, we introduce a new weighted quantile regression method. Traditionally, the estimation of the parameters involved in quantile regression is obtained by minimizing a loss function based on absolute distances with weights independent of explanatory variables. Specifically, we study a new estimation method using a weighted loss function with the weights associated with explanatory variables so that the performance of the resulting estimation can be improved. In full generality, we derive the asymptotic distribution of the weighted quantile regression estimators for any uniformly bounded positive weight function independent of the response. Two practical weighting schemes are proposed, each for a certain type of data. Monte Carlo simulations are carried out for comparing our proposed methods with the classical approaches. We also demonstrate the proposed methods using two real-life data sets from the literature. Both our simulation study and the results from these examples show that our proposed method outperforms the classical approaches when the relative efficiency is measured by the mean-squared errors of the estimators.  相似文献   

7.
A mean residual life function (MRLF) is the remaining life expectancy of a subject who has survived to a certain time point. In the presence of covariates, regression models are needed to study the association between the MRLFs and covariates. If the survival time tends to be too long or the tail is not observed, the restricted mean residual life must be considered. In this paper, we propose the proportional restricted mean residual life model for fitting survival data under right censoring. For inference on the model parameters, martingale estimating equations are developed, and the asymptotic properties of the proposed estimators are established. In addition, a class of goodness-of-fit test is presented to assess the adequacy of the model. The finite sample behavior of the proposed estimators is evaluated through simulation studies, and the approach is applied to a set of real life data collected from a randomized clinical trial.  相似文献   

8.
Linear regression analysis has been studied extensively in a random censorship setting, but typically all of the censoring indicators are assumed to be observed. In this paper, we develop synthetic data methods for estimating regression parameters in a linear model when some censoring indicators are missing. We define estimators based on regression calibration, imputation, and inverse probability weighting techniques, and we prove all three estimators are asymptotically normal. The finite-sample performance of each estimator is evaluated via simulation. We illustrate our methods by assessing the effects of sex and age on the time to non-ambulatory progression for patients in a brain cancer clinical trial.  相似文献   

9.
In this paper, the ridge estimation method is generalized to the median regression. Though the least absolute deviation (LAD) estimation method is robust in the presence of non-Gaussian or asymmetric error terms, it can still deteriorate into a severe multicollinearity problem when non-orthogonal explanatory variables are involved. The proposed method increases the efficiency of the LAD estimators by reducing the variance inflation and giving more room for the bias to get a smaller mean squared error of the LAD estimators. This paper includes an application of the new methodology and a simulation study as well.  相似文献   

10.
We implement profile empirical likelihood-based inference for censored median regression models. Inference for any specified subvector is carried out by profiling out the nuisance parameters from the “plug-in” empirical likelihood ratio function proposed by Qin and Tsao. To obtain the critical value of the profile empirical likelihood ratio statistic, we first investigate its asymptotic distribution. The limiting distribution is a sum of weighted chi square distributions. Unlike for the full empirical likelihood, however, the derived asymptotic distribution has intractable covariance structure. Therefore, we employ the bootstrap to obtain the critical value, and compare the resulting confidence intervals with the ones obtained through Basawa and Koul’s minimum dispersion statistic. Furthermore, we obtain confidence intervals for the age and treatment effects in a lung cancer data set.  相似文献   

11.
Bilinear models in which the expectation of a two-way array is the sum of products of parameters are widely used in spectroscopy. In this paper we present an algorithm called combined-vector successive overrelaxation (COV-SOR) for bilinear models, and compare it with methods like alternating least squares, singular value decomposition, and the Marquardt procedure. Comparisons are done for missing data also.  相似文献   

12.
Inverse regression estimation for censored data   总被引:1,自引:0,他引:1  
An inverse regression methodology for assessing predictor performance in the censored data setup is developed along with inference procedures and a computational algorithm. The technique developed here allows for conditioning on the unobserved failure time along with a weighting mechanism that accounts for the censoring. The implementation is nonparametric and computationally fast. This provides an efficient methodological tool that can be used especially in cases where the usual modeling assumptions are not applicable to the data under consideration. It can also be a good diagnostic tool that can be used in the model selection process. We have provided theoretical justification of consistency and asymptotic normality of the methodology. Simulation studies and two data analyses are provided to illustrate the practical utility of the procedure.  相似文献   

13.
Statistical procedures for constructing confidence intervals for median lifetime often rest on a distributional assumption for failure times.This paper explores the interplay between censoring levels and robustness for two construction procedures based on exponential lifetime, subject to general right-censoring. Data are simulated from nearby Weibull distributions. As expected, the simulations indicate that when the exponential assumption is not satisfied, observed coverage by the confidence intervals may differ substantially from the specified coverage level. The marked improvement in the robustness properties of the intervals as the level of censoring increases suggests questions for future research.  相似文献   

14.
In this paper, we study linear regression analysis when some of the censoring indicators are missing at random. We define regression calibration estimate, imputation estimate and inverse probability weighted estimate for the regression coefficient vector based on the weighted least squared approach due to Stute (1993), and prove all the estimators are asymptotically normal. A simulation study was conducted to evaluate the finite properties of the proposed estimators, and a real data example is provided to illustrate our methods.  相似文献   

15.
Censored median regression has proved useful for analyzing survival data in complicated situations, say, when the variance is heteroscedastic or the data contain outliers. In this paper, we study the sparse estimation for censored median regression models, which is an important problem for high dimensional survival data analysis. In particular, a new procedure is proposed to minimize an inverse-censoring-probability weighted least absolute deviation loss subject to the adaptive LASSO penalty and result in a sparse and robust median estimator. We show that, with a proper choice of the tuning parameter, the procedure can identify the underlying sparse model consistently and has desired large-sample properties including root-n consistency and the asymptotic normality. The procedure also enjoys great advantages in computation, since its entire solution path can be obtained efficiently. Furthermore, we propose a resampling method to estimate the variance of the estimator. The performance of the procedure is illustrated by extensive simulations and two real data applications including one microarray gene expression survival data.  相似文献   

16.
We consider the design of experiments when estimation is to be performed using locally weighted regression methods. We adopt criteria that consider both estimation error (variance) and error resulting from model misspecification (bias). Working with continuous designs, we use the ideas developed in convex design theory to analyze properties of the corresponding optimal designs. Numerical procedures for constructing optimal designs are developed and applied to a variety of design scenarios in one and two dimensions. Among the interesting properties of the constructed designs are the following: (1) Design points tend to be more spread throughout the design space than in the classical case. (2) The optimal designs appear to be less model and criterion dependent than their classical counterparts.(3) While the optimal designs are relatively insensitive to the specification of the design space boundaries, the allocation of supporting points is strongly governed by the points of interest and the selected weight function, if the latter is concentrated in areas significantly smaller than the design region. Some singular and unstable situations occur in the case of saturated designs. The corresponding phenomenon is discussed using a univariate linear regression example.  相似文献   

17.
Clusterwise regression aims to cluster data sets where the clusters are characterized by their specific regression coefficients in a linear regression model. In this paper, we propose a method for determining a partition which uses an idea of robust regression. We start with some random weighting to determine a start partition and continue in the spirit of M-estimators. The residuals for all regressions are used to assign the observations to the different groups. As target function we use the determination coefficient R2wR^{2}_{w} for the overall model. This coefficient is suitably defined for weighted regression.  相似文献   

18.
Abstract

In this article, we study the variable selection and estimation for linear regression models with missing covariates. The proposed estimation method is almost as efficient as the popular least-squares-based estimation method for normal random errors and empirically shown to be much more efficient and robust with respect to heavy tailed errors or outliers in the responses and covariates. To achieve sparsity, a variable selection procedure based on SCAD is proposed to conduct estimation and variable selection simultaneously. The procedure is shown to possess the oracle property. To deal with the covariates missing, we consider the inverse probability weighted estimators for the linear model when the selection probability is known or unknown. It is shown that the estimator by using estimated selection probability has a smaller asymptotic variance than that with true selection probability, thus is more efficient. Therefore, the important Horvitz-Thompson property is verified for penalized rank estimator with the covariates missing in the linear model. Some numerical examples are provided to demonstrate the performance of the estimators.  相似文献   

19.
Abstract

The locally weighted censored quantile regression approach is proposed for panel data models with fixed effects, which allows for random censoring. The resulting estimators are obtained by employing the fixed effects quantile regression method. The weights are selected either parametrically, semi-parametrically or non-parametrically. The large panel data asymptotics are used in an attempt to cope with the incidental parameter problem. The consistency and limiting distribution of the proposed estimator are also derived. The finite sample performance of the proposed estimators are examined via Monte Carlo simulations.  相似文献   

20.
Process regression methodology is underdeveloped relative to the frequency with which pertinent data arise. In this article, the response-190 is a binary indicator process representing the joint event of being alive and remaining in a specific state. The process is indexed by time (e.g., time since diagnosis) and observed continuously. Data of this sort occur frequently in the study of chronic disease. A general area of application involves a recurrent event with non-negligible duration (e.g., hospitalization and associated length of hospital stay) and subject to a terminating event (e.g., death). We propose a semiparametric multiplicative model for the process version of the probability of being alive and in the (transient) state of interest. Under the proposed methods, the regression parameter is estimated through a procedure that does not require estimating the baseline probability. Unlike the majority of process regression methods, the proposed methods accommodate multiple sources of censoring. In particular, we derive a computationally convenient variant of inverse probability of censoring weighting based on the additive hazards model. We show that the regression parameter estimator is asymptotically normal, and that the baseline probability function estimator converges to a Gaussian process. Simulations demonstrate that our estimators have good finite sample performance. We apply our method to national end-stage liver disease data. The Canadian Journal of Statistics 48: 222–237; 2020 © 2019 Statistical Society of Canada  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号