共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Expected shortfall (ES) is a well-known measure of extreme loss associated with a risky asset or portfolio. For any 0 < p < 1, the 100(1 ? p) percent ES is defined as the mean of the conditional loss distribution, given the event that the loss exceeds (1 ? p)th quantile of the marginal loss distribution. Estimation of ES based on asset return data is an important problem in finance. Several nonparametric estimators of the expected shortfall are available in the literature. Using Monte Carlo simulations, we compare the accuracy of these estimators under the condition that p → 0 as n → ∞ for several asset return time series models, where n is the sample size. Not much seems to be known regarding the properties of the ES estimators under this condition. For p close to zero, the ES measures an extreme loss in the right tail of the loss distribution of the asset or portfolio. Our simulations and real-data analysis provide insight into the effect of varying p with n on the performance of nonparametric ES estimators. 相似文献
6.
7.
8.
9.
《Serials Review》1987,13(1):49-50
10.
11.
12.
13.
14.
15.
《Serials Review》1988,14(4):75-76
16.
17.
18.
19.
20.
《Journal of Statistical Computation and Simulation》2012,82(2-4):369-384
The exact and asymptotic upper tail probabilities ( α= .l0, .05, .01, .001) of the three chi-squared goodness-of-fit statistics Pearson's X 2, likelihood ratioG 2, and power-divergence statisticD 2 (λ ) , with λ = 2/3, are compared numerically for simple null hypotheses not involving parameter estimation. Three types of such hypotheses were investigated (equal cell probabilities, proportional cell probabilities, some fixed small expectations together with some increasing large expectations) for the number of cells being between 3 and 15, and for sample sizes from 10 to 40, increasing by steps of one. Rating the relative accuracy of the chi-squared approximation in terms of ±10% and ±20% intervals around α led to the following conclusions: 1. Using G 2 is not recommended. 2 . At the more relevant significance levels α = .10 and α = .05X 2 should be preferred over D 2. Solely in case of unequal cell probabilitiesD 2 is the better choice at α = .O1 and α = .001. 3 . Yarnold's (1970; Journal of the Amerin Statistical Association, 65, 864-886) rule for the minimum expectation when using X 2 ("If the number of cells k is 3 or more, and if r denotes the number of expectations less than 5, then the minimum expectation may be as small as 5r/k.") generalizes to D 2; it gives a good lower limit for the expected cell frequencies, however, when the number of cells is greater than 3. For k = 3 , even sample sizes over 15 may be insufficient. 相似文献