首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
不同总体量和样本量时如何计算比例的置信区间   总被引:2,自引:1,他引:2  
在总体或者总体子集不大情况下的抽样调查中,往往不易得出合理的关于比例的区间估计。这一类问题在抽样调查实践中已经严重到非说不可的地步。文章讨论了在样本量不大或者(和)在总体不大时估计比例的置信区间时往往忽略的问题,并给出了在不同情况下如何计算置信区间的方法。  相似文献   

2.
This article introduces mean-minimum (MM) exact confidence intervals for a binomial probability. These intervals guarantee that both the mean and the minimum frequentist coverage never drop below specified values. For example, an MM 95[93]% interval has mean coverage at least 95% and minimum coverage at least 93%. In the conventional sense, such an interval can be viewed as an exact 93% interval that has mean coverage at least 95% or it can be viewed as an approximate 95% interval that has minimum coverage at least 93%. Graphical and numerical summaries of coverage and expected length suggest that the Blaker-based MM exact interval is an attractive alternative to, even an improvement over, commonly recommended approximate and exact intervals, including the Agresti–Coull approximate interval, the Clopper–Pearson (CP) exact interval, and the more recently recommended CP-, Blaker-, and Sterne-based mean-coverage-adjusted approximate intervals.  相似文献   

3.
The problem of estimating the difference between two binomial proportions is considered. Closed-form approximate confidence intervals (CIs) and a fiducial CI for the difference between proportions are proposed. The approximate CIs are simple to compute, and they perform better than the classical Wald CI in terms of coverage probabilities and precision. Numerical studies indicate that these approximate CIs can be used safely for practical applications under a simple condition. The fiducial CI is more accurate than the approximate CIs in terms of coverage probabilities. The fiducial CIs, the Newcombe CIs, and the Miettinen–Nurminen CIs are comparable in terms of coverage probabilities and precision. The interval estimation procedures are illustrated using two examples.  相似文献   

4.
Confidence Intervals Based on Local Linear Smoother   总被引:1,自引:0,他引:1  
Point-wise confidence intervals for a non-parametric regression function in conjunction with the popular local linear smoother are considered. The confidence intervals are based on the asymptotic normal distribution of the local linear smoother. Their coverage accuracy is evaluated by developing Edgeworth expansion for the coverage probability. It is found that the coverage error near the boundary of the support of the regression function is of a larger order than that in the interior, which implies that the local linear smoother is not adaptive to the boundary in terms of coverage. This is quite unexpected as the local linear smoother is adaptive to the boundary in terms of the mean squared error.  相似文献   

5.
We develop an approach to evaluating frequentist model averaging procedures by considering them in a simple situation in which there are two‐nested linear regression models over which we average. We introduce a general class of model averaged confidence intervals, obtain exact expressions for the coverage and the scaled expected length of the intervals, and use these to compute these quantities for the model averaged profile likelihood (MPI) and model‐averaged tail area confidence intervals proposed by D. Fletcher and D. Turek. We show that the MPI confidence intervals can perform more poorly than the standard confidence interval used after model selection but ignoring the model selection process. The model‐averaged tail area confidence intervals perform better than the MPI and postmodel‐selection confidence intervals but, for the examples that we consider, offer little over simply using the standard confidence interval for θ under the full model, with the same nominal coverage.  相似文献   

6.
It is shown how various exact non-parametric inferences based on order statistics in one or two random samples can be generalized to situations with progressive type-II censoring, which is a kind of evolutionary right censoring. Ordinary type-II right censoring is a special case of such progressive censoring. These inferences include confidence intervals for a given parent quantile, prediction intervals for a given order statistic of a future sample, and related two-sample inferences based on exceedance probabilities. The proposed inferences are valid for any parent distribution with continuous distribution function. The key result is that each observable uncensored order statistic that becomes available with progressive type-II censoring can be represented as a mixture with known weights of underlying ordinary order statistics. The importance of this mixture representation lies in that various properties of such observable order statistics can be deduced immediately from well-known properties of ordinary order statistics.  相似文献   

7.
Despite the simplicity of the Bernoulli process, developing good confidence interval procedures for its parameter—the probability of success p—is deceptively difficult. The binary data yield a discrete number of successes from a discrete number of trials, n. This discreteness results in actual coverage probabilities that oscillate with the n for fixed values of p (and with p for fixed n). Moreover, this oscillation necessitates a large sample size to guarantee a good coverage probability when p is close to 0 or 1.

It is well known that the Wilson procedure is superior to many existing procedures because it is less sensitive to p than any other procedures, therefore it is less costly. The procedures proposed in this article work as well as the Wilson procedure when 0.1 ≤p ≤ 0.9, and are even less sensitive (i.e., more robust) than the Wilson procedure when p is close to 0 or 1. Specifically, when the nominal coverage probability is 0.95, the Wilson procedure requires a sample size 1, 021 to guarantee that the coverage probabilities stay above 0.92 for any 0.001 ≤ min {p, 1 ?p} <0.01. By contrast, our procedures guarantee the same coverage probabilities but only need a sample size 177 without increasing either the expected interval width or the standard deviation of the interval width.  相似文献   

8.
We show that the confidence interval version of the extended exact unconditional Z test of Suissa and Shuster (1985) for testing the equality of two binomial proportions is due to general results of Buehler (1957), Sudakov and references cited there (1974), and Harris and Soms (1984). We apply these results to obtain exact unconditional confidence intervals for the difference between two proportions, deriving an explicit solution for the “best” outcome, make some comments on Buehler's (1957) method and give a numerical example. The Appendix contains a listing of the necessary FORTRAN programs.  相似文献   

9.
Abstract

Asymptotic confidence intervals are given for two functions of multinomial outcome probabilities: Gini's diversity measure and Shannon's entropy. “Adjusted” proportions are used in all asymptotic mean and variance formulas, along with a possible logarithmic transformation. Exact confidence coefficients are computed in some cases. Monte Carlo simulation is used in other cases to compare actual coverages to nominal ones. Some recommendations are made.  相似文献   

10.
Abstract.  This article extends recent results [Scand. J. Statist. 28 (2001) 699] about exact non-parametric inferences based on order statistics with progressive type-II censoring. The extension lies in that non-parametric inferences are now covered where the dependence between involved order statistics cannot be circumvented. These inferences include: (a) tolerance intervals containing at least a specified proportion of the parent distribution, (b) prediction intervals containing at least a specified number of observations in a future sample, and (c) outer and/or inner confidence intervals for a quantile interval of the parent distribution. The inferences are valid for any parent distribution with continuous distribution function. The key result shows how the probability of an event involving k dependent order statistics that are observable/uncensored with progressive type-II censoring can be represented as a mixture with known weights of corresponding probabilities involving k dependent ordinary order statistics. Further applications/developments concerning exact Kolmogorov-type confidence regions are indicated.  相似文献   

11.
Suppose that we have a nonparametric regression model Y = m(X) + ε with XRp, where X is a random design variable and is observed completely, and Y is the response variable and some Y-values are missing at random. Based on the “complete” data sets for Y after nonaprametric regression imputation and inverse probability weighted imputation, two estimators of the regression function m(x0) for fixed x0Rp are proposed. Asymptotic normality of two estimators is established, which is used to construct normal approximation-based confidence intervals for m(x0). We also construct an empirical likelihood (EL) statistic for m(x0) with limiting distribution of χ21, which is used to construct an EL confidence interval for m(x0).  相似文献   

12.
For a normal distribution with known variance, the standard confidence interval of the location parameter is derived from the classical Neyman procedure. When the parameter space is known to be restricted, the standard confidence interval is arguably unsatisfactory. Recent articles have addressed this problem and proposed confidence intervals for the mean of a normal distribution where the parameter space is not less than zero. In this article, we propose a new confidence interval, rp interval, and derive the Bayesian credible interval and likelihood ratio interval for general restricted parameter space. We compare these intervals with the standard interval and the minimax interval. Simulation studies are undertaken to assess the performances of these confidence intervals.  相似文献   

13.
Estimators of the expectations of order statistics, suggested by Harrell &; Davis, are used in place of the order statistics in a quantile estimator, proposed by Kappenman , to produce a modification of Kappenman's procedure. Simulation studies indicate that the modification generally results in a reduction of mean squared error  相似文献   

14.
A computer algorithm for computing the alternative distributions of the Wilcoxon signed rank statistic under shift alternatives is discussed. An explicit error bound is derived for the numeric integration approximation to these distributions.

A nonparametric process control procedure in which the standard CUSUM procedure is applied to the Wilcoxon signed rank statistic is discussed. In order to implement this procedure, the distribution of the Wilcoxon statistic under shift of the underlying distribution from its point of symmetry needs to be computed. The average run length of the nonparametric and parametric CUSUM are compared.  相似文献   

15.
Several researchers considered various interval estimators for estimating the population coefficient of variation (CV) of symmetric and skewed distributions. Since they considered at different times and under different simulation conditions, their performances are not comparable as a whole. In this article, an attempt has been made to review some existing estimators along with some proposed methods and compare them under the same simulation condition. In particular, we have considered Hendricks and Robey, Mckay, Miller, Sharma and Krishna, Curto and Pinto, and also some bootstrap proposed interval estimators for estimating the population CV. A simulation study has been conducted to compare the performance of the estimators. Both average widths and coverage probabilities are considered as a criterion of the good estimators. Two real life health related data sets are analyzed to illustrate the findings of the article. Based on the simulation study, some possible good interval estimators have been recommended for the practitioners.  相似文献   

16.
Abstract.  We present a wavelet procedure for defining confidence intervals for f ( x 0), where x 0 is a given point and f is an unknown density from which there are independent observations. We use an undersmoothing method which is shown to be near optimal (up to a logarithmic term) in a first order sense. We propose a second order correction using the Edgeworth expansion. The adaptation with respect to the unknown regularity of f is given via a Lepskii type algorithm and has the advantage to be well located. The theoretical results are proved under weak assumptions and concern very irregular or oscillating functions. An empirical study gives some hints for choosing the constant of the threshold level. The results are very encouraging for the length of the intervals as well as for the coverage accuracy.  相似文献   

17.
For surveys with sensitive questions, randomized response sampling strategies are often used to increase the response rate and encourage participants to provide the truth of the question while participants' privacy and confidentiality are protected. The proportion of responding ‘yes’ to the sensitive question is the parameter of interest. Asymptotic confidence intervals for this proportion are calculated from the limiting distribution of the test statistic, and are traditionally used in practice for statistical inference. It is well known that these intervals do not guarantee the coverage probability. For this reason, we apply the exact approach, adjusting the critical value as in [10 J. Frey and A. Pérez, Exact binomial confidence intervals for randomized response, Amer. Statist.66 (2012), pp. 815. Available at http://dx.doi.org/10.1080/00031305.2012.663680.[Taylor &; Francis Online], [Web of Science ®] [Google Scholar]], to construct the exact confidence interval of the proportion based on the likelihood ratio test and three Wilson-type tests. Two randomized response sampling strategies are studied: the Warner model and the unrelated model. The exact interval based on the likelihood ratio test has shorter average length than others when the probability of the sensitive question is low. Exact Wilson intervals have good performance in other cases. A real example from a survey study is utilized to illustrate the application of these exact intervals.  相似文献   

18.
Hsiuying Wang 《Statistics》2013,47(2):327-343
Setting confidence bounds or intervals for a parameter in a restricted parameter space is an important issue in applications and is widely discussed in the recent literature. In this article, we focus on the distributions in the exponential families, and propose general forms of the truncated Pratt interval and rp interval for the means. We take the Poisson distribution as an example to illustrate the method and compare it with the other existing intervals. Besides possessing the merits from the theoretical inferences, the proposed intervals are also shown to be competitive approaches from simulation and real-data application studies.  相似文献   

19.
Abstract.  A kernel regression imputation method for missing response data is developed. A class of bias-corrected empirical log-likelihood ratios for the response mean is defined. It is shown that any member of our class of ratios is asymptotically chi-squared, and the corresponding empirical likelihood confidence interval for the response mean is constructed. Our ratios share some of the desired features of the existing methods: they are self-scale invariant and no plug-in estimators for the adjustment factor and asymptotic variance are needed; when estimating the non-parametric function in the model, undersmoothing to ensure root- n consistency of the estimator for the parameter is avoided. Since the range of bandwidths contains the optimal bandwidth for estimating the regression function, the existing data-driven algorithm is valid for selecting an optimal bandwidth. We also study the normal approximation-based method. A simulation study is undertaken to compare the empirical likelihood with the normal approximation method in terms of coverage accuracies and average lengths of confidence intervals.  相似文献   

20.
Abstract.  This paper proposes a constrained empirical likelihood confidence region for a parameter in the semi-linear errors-in-variables model. The confidence region is constructed by combining the score function corresponding to the squared orthogonal distance with a constraint on the parameter, and it overcomes that the solution of limiting mean estimation equations is not unique. It is shown that the empirical log likelihood ratio at the true parameter converges to the standard chi-square distribution. Simulations show that the proposed confidence region has coverage probability which is closer to the nominal level, as well as narrower than those of normal approximation of generalized least squares estimator in most cases. A real data example is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号