首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Small area estimators are often based on linear mixed models under the assumption that relationships among variables are stationary across the area of interest (Fay–Herriot models). This hypothesis is patently violated when the population is divided into heterogeneous latent subgroups. In this paper we propose a local Fay–Herriot model assisted by a Simulated Annealing algorithm to identify the latent subgroups of small areas. The value minimized through the Simulated Annealing algorithm is the sum of the estimated mean squared error (MSE) of the small area estimates. The technique is employed for small area estimates of erosion on agricultural land within the Rathbun Lake Watershed (IA, USA). The results are promising and show that introducing local stationarity in a small area model may lead to useful improvements in the performance of the estimators.  相似文献   

2.
For small area estimation of area‐level data, the Fay–Herriot model is extensively used as a model‐based method. In the Fay–Herriot model, it is conventionally assumed that the sampling variances are known, whereas estimators of sampling variances are used in practice. Thus, the settings of knowing sampling variances are unrealistic, and several methods are proposed to overcome this problem. In this paper, we assume the situation where the direct estimators of the sampling variances are available as well as the sample means. Using this information, we propose a Bayesian yet objective method producing shrinkage estimation of both means and variances in the Fay–Herriot model. We consider the hierarchical structure for the sampling variances, and we set uniform prior on model parameters to keep objectivity of the proposed model. For validity of the posterior inference, we show under mild conditions that the posterior distribution is proper and has finite variances. We investigate the numerical performance through simulation and empirical studies.  相似文献   

3.
Small area estimation has long been a popular and important research topic due to its growing demand in public and private sectors. We consider here the basic area level model, popularly known as the Fay–Herriot model. Although much of current research is predominantly focused on second order unbiased estimation of mean squared prediction errors, we concentrate on developing confidence intervals (CIs) for the small area means that are second order correct. The corrected CI can be readily implemented, because it only requires quantities that are already estimated as part of the mean squared error estimation. We extend the approach to a CI for the difference of two small area means. The findings are illustrated with a simulation study.  相似文献   

4.
The Fay–Herriot model, a popular approach in small area estimation, uses relevant covariates to improve the inference for quantities of interest in small sub-populations. The conditional Akaike information (AI) (Vaida and Blanchard, 2005 [23]) in linear mixed-effect models with i.i.d. errors can be extended to the Fay–Herriot model for measuring prediction performance. In this paper, we derive the unbiased conditional AIC (cAIC) for three popular approaches to fitting the Fay–Herriot model. The three cAIC have closed forms and are convenient to implement. We conduct a simulation study to demonstrate their accuracy in estimating the conditional AI and superior performance in model selection than the classic AIC. We also apply the cAIC in estimating county-level prevalence rates of obesity for working-age Hispanic females in California.  相似文献   

5.
Random effects model can account for the lack of fitting a regression model and increase precision of estimating area‐level means. However, in case that the synthetic mean provides accurate estimates, the prior distribution may inflate an estimation error. Thus, it is desirable to consider the uncertain prior distribution, which is expressed as the mixture of a one‐point distribution and a proper prior distribution. In this paper, we develop an empirical Bayes approach for estimating area‐level means, using the uncertain prior distribution in the context of a natural exponential family, which we call the empirical uncertain Bayes (EUB) method. The regression model considered in this paper includes the Poisson‐gamma and the binomial‐beta, and the normal‐normal (Fay–Herriot) model, which are typically used in small area estimation. We obtain the estimators of hyperparameters based on the marginal likelihood by using a well‐known expectation‐maximization algorithm and propose the EUB estimators of area means. For risk evaluation of the EUB estimator, we derive a second‐order unbiased estimator of a conditional mean squared error by using some techniques of numerical calculation. Through simulation studies and real data applications, we evaluate a performance of the EUB estimator and compare it with the usual empirical Bayes estimator.  相似文献   

6.
The empirical best linear unbiased predictor (EBLUP) is a linear shrinkage of the direct estimate toward the regression estimate and useful for the small area estimation in the sense of increasing precision of estimation of small area means. However, one potential difficulty of EBLUP is that the overall estimate for a larger geographical area based on a sum of EBLUP is not necessarily identical to the corresponding direct estimate like the overall sample mean. To fix this problem, the paper suggests a new method for benchmarking EBLUP in the Fay–Herriot model without assuming normality of random effects and sampling errors. The resulting benchmarked empirical linear shrinkage (BELS) predictor has novelty in the sense that coefficients for benchmarking are adjusted based on the data from each area. To measure the uncertainty of BELS, the second-order unbiased estimator of the mean squared error is derived.  相似文献   

7.
This article reviews four area-level linear mixed models that borrow strength by exploiting the possible correlation among the neighboring areas or/and past time periods. Its main goal is to study if there are efficiency gains when a spatial dependence or/and a temporal autocorrelation among random-area effects are included into the models. The Fay–Herriot estimator is used as benchmark. A design-based simulation study based on real data collected from a longitudinal survey conducted by a statistical office is presented. Our results show that models that explore both spatial and chronological association considerably improve the efficiency of small area estimates.  相似文献   

8.
Small area estimation plays a prominent role in survey sampling due to a growing demand for reliable small area estimates from both public and private sectors. Popularity of model-based inference is increasing in survey sampling, particularly, in small area estimation. The estimates of the small area parameters can profitably ‘borrow strength’ from data on related multiple characteristics and/or auxiliary variables from other neighboring areas through appropriate models. Fay (1987, Small Area Statistics, Wiley, New York, pp. 91–102) proposed multivariate regression for small area estimation of multiple characteristics. The success of this modeling rests essentially on the strength of correlation of these dependent variables. To estimate small area mean vectors of multiple characteristics, multivariate modeling has been proposed in the literature via a multivariate variance components model. We use this approach to empirical best linear unbiased and empirical Bayes prediction of small area mean vectors. We use data from Battese et al. (1988, J. Amer. Statist. Assoc. 83, 28 –36) to conduct a simulation which shows that the multivariate approach may achieve substantial improvement over the usual univariate approach.  相似文献   

9.
Small area estimators in linear models are typically expressed as a convex combination of direct estimators and synthetic estimators from a suitable model. When auxiliary information used in the model is measured with error, a new estimator, accounting for the measurement error in the covariates, has been proposed in the literature. Recently, for area‐level model, Ybarra & Lohr (Biometrika, 95, 2008, 919) suggested a suitable modification to the estimates of small area means based on Fay & Herriot (J. Am. Stat. Assoc., 74, 1979, 269) model where some of the covariates are measured with error. They used a frequentist approach based on the method of moments. Adopting a Bayesian approach, we propose to rewrite the measurement error model as a hierarchical model; we use improper non‐informative priors on the model parameters and show, under a mild condition, that the joint posterior distribution is proper and the marginal posterior distributions of the model parameters have finite variances. We conduct a simulation study exploring different scenarios. The Bayesian predictors we propose show smaller empirical mean squared errors than the frequentist predictors of Ybarra & Lohr (Biometrika, 95, 2008, 919), and they seem also to be more stable in terms of variability and bias. We apply the proposed methodology to two real examples.  相似文献   

10.
The Fay–Herriot model is a linear mixed model that plays a relevant role in small area estimation (SAE). Under the SAE set-up, tools for selecting an adequate model are required. Applied statisticians are often interested on deciding if it is worthwhile to use a mixed effect model instead of a simpler fixed-effect model. This problem is not standard because under the null hypothesis the random effect variance is on the boundary of the parameter space. The likelihood ratio test and the residual likelihood ratio test are proposed and their finite sample distributions are derived. Finally, we analyse their behaviour under simulated scenarios and we also apply them to real data.  相似文献   

11.
A model involving autocorrelated random effects and sampling errors is proposed for small-area estimation, using both time-series and cross-sectional data. The sampling errors are assumed to have a known block-diagonal covariance matrix. This model is an extension of a well-known model, due to Fay and Herriot (1979), for cross-sectional data. A two-stage estimator of a small-area mean for the current period is obtained under the proposed model with known autocorrelation, by first deriving the best linear unbiased prediction estimator assuming known variance components, and then replacing them with their consistent estimators. Extending the approach of Prasad and Rao (1986, 1990) for the Fay-Herriot model, an estimator of mean squared error (MSE) of the two-stage estimator, correct to a second-order approximation for a small or moderate number of time points, T, and a large number of small areas, m, is obtained. The case of unknown autocorrelation is also considered. Limited simulation results on the efficiency of two-stage estimators and the accuracy of the proposed estimator of MSE are présentés.  相似文献   

12.
Unit-level regression models are commonly used in small area estimation (SAE) to obtain an empirical best linear unbiased prediction of small area characteristics. The underlying assumptions of these models, however, may be unrealistic in some applications. Previous work developed a copula-based SAE model where the empirical Kendall's tau was used to estimate the dependence between two units from the same area. In this article, we propose a likelihood framework to estimate the intra-class dependence of the multivariate exchangeable copula for the empirical best unbiased prediction (EBUP) of small area means. One appeal of the proposed approach lies in its accommodation of both parametric and semi-parametric estimation approaches. Under each estimation method, we further propose a bootstrap approach to obtain a nearly unbiased estimator of the mean squared prediction error of the EBUP of small area means. The performance of the proposed methods is evaluated through simulation studies and also by a real data application.  相似文献   

13.
To model extreme spatial events, a general approach is to use the generalized extreme value (GEV) distribution with spatially varying parameters such as spatial GEV models and latent variable models. In the literature, this approach is mostly used to capture spatial dependence for only one type of event. This limits the applications to air pollutants data as different pollutants may chemically interact with each other. A recent advancement in spatial extremes modelling for multiple variables is the multivariate max-stable processes. Similarly to univariate max-stable processes, the multivariate version also assumes standard distributions such as unit-Fréchet as margins. Additional modelling is required for applications such as spatial prediction. In this paper, we extend the marginal methods such as spatial GEV models and latent variable models into a multivariate setting based on copulas so that it is capable of handling both the spatial dependence and the dependence among multiple pollutants. We apply our proposed model to analyse weekly maxima of nitrogen dioxide, sulphur dioxide, respirable suspended particles, fine suspended particles, and ozone collected in Pearl River Delta in China.  相似文献   

14.
In this paper, a new small domain estimator for area-level data is proposed. The proposed estimator is driven by a real problem of estimating the mean price of habitation transaction at a regional level in a European country, using data collected from a longitudinal survey conducted by a national statistical office. At the desired level of inference, it is not possible to provide accurate direct estimates because the sample sizes in these domains are very small. An area-level model with a heterogeneous covariance structure of random effects assists the proposed combined estimator. This model is an extension of a model due to Fay and Herriot [5], but it integrates information across domains and over several periods of time. In addition, a modified method of estimation of variance components for time-series and cross-sectional area-level models is proposed by including the design weights. A Monte Carlo simulation, based on real data, is conducted to investigate the performance of the proposed estimators in comparison with other estimators frequently used in small area estimation problems. In particular, we compare the performance of these estimators with the estimator based on the Rao–Yu model [23]. The simulation study also accesses the performance of the modified variance component estimators in comparison with the traditional ANOVA method. Simulation results show that the estimators proposed perform better than the other estimators in terms of both precision and bias.  相似文献   

15.
We develop Bayesian models for density regression with emphasis on discrete outcomes. The problem of density regression is approached by considering methods for multivariate density estimation of mixed scale variables, and obtaining conditional densities from the multivariate ones. The approach to multivariate mixed scale outcome density estimation that we describe represents discrete variables, either responses or covariates, as discretised versions of continuous latent variables. We present and compare several models for obtaining these thresholds in the challenging context of count data analysis where the response may be over‐ and/or under‐dispersed in some of the regions of the covariate space. We utilise a nonparametric mixture of multivariate Gaussians to model the directly observed and the latent continuous variables. The paper presents a Markov chain Monte Carlo algorithm for posterior sampling, sufficient conditions for weak consistency, and illustrations on density, mean and quantile regression utilising simulated and real datasets.  相似文献   

16.
Spatial generalised linear mixed models are used commonly for modelling non‐Gaussian discrete spatial responses. In these models, the spatial correlation structure of data is modelled by spatial latent variables. Most users are satisfied with using a normal distribution for these variables, but in many applications it is unclear whether or not the normal assumption holds. This assumption is relaxed in the present work, using a closed skew normal distribution for the spatial latent variables, which is more flexible and includes normal and skew normal distributions. The parameter estimates and spatial predictions are calculated using the Markov Chain Monte Carlo method. Finally, the performance of the proposed model is analysed via two simulation studies, followed by a case study in which practical aspects are dealt with. The proposed model appears to give a smaller cross‐validation mean square error of the spatial prediction than the normal prior in modelling the temperature data set.  相似文献   

17.
Hierarchical models are popular in many applied statistics fields including Small Area Estimation. One well known model employed in this particular field is the Fay–Herriot model, in which unobservable parameters are assumed to be Gaussian. In Hierarchical models assumptions about unobservable quantities are difficult to check. For a special case of the Fay–Herriot model, Sinharay and Stern [2003. Posterior predictive model checking in Hierarchical models. J. Statist. Plann. Inference 111, 209–221] showed that violations of the assumptions about the random effects are difficult to detect using posterior predictive checks. In this present paper we consider two extensions of the Fay–Herriot model in which the random effects are assumed to be distributed according to either an exponential power (EP) distribution or a skewed EP distribution. We aim to explore the robustness of the Fay–Herriot model for the estimation of individual area means as well as the empirical distribution function of their ‘ensemble’. Our findings, which are based on a simulation experiment, are largely consistent with those of Sinharay and Stern as far as the efficient estimation of individual small area parameters is concerned. However, when estimating the empirical distribution function of the ‘ensemble’ of small area parameters, results are more sensitive to the failure of distributional assumptions.  相似文献   

18.
Recent analyses seeking to explain variation in area health outcomes often consider the impact on them of latent measures (i.e. unobserved constructs) of population health risk. The latter are typically obtained by forms of multivariate analysis, with a small set of latent constructs derived from a collection of observed indicators, and a few recent area studies take such constructs to be spatially structured rather than independent over areas. A confirmatory approach is often applicable to the model linking indicators to constructs, based on substantive knowledge of relevant risks for particular diseases or outcomes. In this paper, population constructs relevant to a particular set of health outcomes are derived using an integrated model containing all the manifest variables, namely health outcome variables, as well as indicator variables underlying the latent constructs. A further feature of the approach is the use of variable selection techniques to select significant loadings and factors (especially in terms of effects of constructs on health outcomes), so ensuring parsimonious models are selected. A case study considers suicide mortality and self-harm contrasts in the East of England in relation to three latent constructs: deprivation, fragmentation and urbanicity.  相似文献   

19.
Nested error linear regression models using survey weights have been studied in small area estimation to obtain efficient model‐based and design‐consistent estimators of small area means. The covariates in these nested error linear regression models are not subject to measurement errors. In practical applications, however, there are many situations in which the covariates are subject to measurement errors. In this paper, we develop a nested error linear regression model with an area‐level covariate subject to functional measurement error. In particular, we propose a pseudo‐empirical Bayes (PEB) predictor to estimate small area means. This predictor borrows strength across areas through the model and makes use of the survey weights to preserve the design consistency as the area sample size increases. We also employ a jackknife method to estimate the mean squared prediction error (MSPE) of the PEB predictor. Finally, we report the results of a simulation study on the performance of our PEB predictor and associated jackknife MSPE estimator.  相似文献   

20.
In survey sampling, policy decisions regarding the allocation of resources to sub‐groups of a population depend on reliable predictors of their underlying parameters. However, in some sub‐groups, called small areas due to small sample sizes relative to the population, the information needed for reliable estimation is typically not available. Consequently, data on a coarser scale are used to predict the characteristics of small areas. Mixed models are the primary tools in small area estimation (SAE) and also borrow information from alternative sources (e.g., previous surveys and administrative and census data sets). In many circumstances, small area predictors are associated with location. For instance, in the case of chronic disease or cancer, it is important for policy makers to understand spatial patterns of disease in order to determine small areas with high risk of disease and establish prevention strategies. The literature considering SAE with spatial random effects is sparse and mostly in the context of spatial linear mixed models. In this article, small area models are proposed for the class of spatial generalized linear mixed models to obtain small area predictors and corresponding second‐order unbiased mean squared prediction errors via Taylor expansion and a parametric bootstrap approach. The performance of the proposed approach is evaluated through simulation studies and application of the models to a real esophageal cancer data set from Minnesota, U.S.A. The Canadian Journal of Statistics 47: 426–437; 2019 © 2019 Statistical Society of Canada  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号