首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose a new model for regression and dependence analysis when addressing spatial data with possibly heavy tails and an asymmetric marginal distribution. We first propose a stationary process with t marginals obtained through scale mixing of a Gaussian process with an inverse square root process with Gamma marginals. We then generalize this construction by considering a skew‐Gaussian process, thus obtaining a process with skew‐t marginal distributions. For the proposed (skew) t process, we study the second‐order and geometrical properties and in the t case, we provide analytic expressions for the bivariate distribution. In an extensive simulation study, we investigate the use of the weighted pairwise likelihood as a method of estimation for the t process. Moreover we compare the performance of the optimal linear predictor of the t process versus the optimal Gaussian predictor. Finally, the effectiveness of our methodology is illustrated by analyzing a georeferenced dataset on maximum temperatures in Australia.  相似文献   

2.
We present a new generalized family of skew two-piece skew-elliptical (GSTPSE) models and derive some its statistical properties. It is shown that the new family of distribution may be written as a mixture of generalized skew elliptical distributions. Also, a new representation theorem for a special case of GSTPSE-distribution is given. Next, we will focus on t kernel density and prove that it is a scale mixture of the generalized skew two-piece skew normal distributions. An explicit expression for the central moments as well as a recurrence relations for its cumulative distribution function and density are obtained. Since, this special case is a uni-/bimodal distribution, a sufficient condition for each cases is given. A real data set on heights of Australian females athletes is analysed. Finally, some concluding remarks and open problems are discussed.  相似文献   

3.
A finite mixture model using the Student's t distribution has been recognized as a robust extension of normal mixtures. Recently, a mixture of skew normal distributions has been found to be effective in the treatment of heterogeneous data involving asymmetric behaviors across subclasses. In this article, we propose a robust mixture framework based on the skew t distribution to efficiently deal with heavy-tailedness, extra skewness and multimodality in a wide range of settings. Statistical mixture modeling based on normal, Student's t and skew normal distributions can be viewed as special cases of the skew t mixture model. We present analytically simple EM-type algorithms for iteratively computing maximum likelihood estimates. The proposed methodology is illustrated by analyzing a real data example.  相似文献   

4.
In this paper, we consider the family of skew generalized t (SGT) distributions originally introduced by Theodossiou [P. Theodossiou, Financial data and the skewed generalized t distribution, Manage. Sci. Part 1 44 (12) ( 1998), pp. 1650–1661] as a skew extension of the generalized t (GT) distribution. The SGT distribution family warrants special attention, because it encompasses distributions having both heavy tails and skewness, and many of the widely used distributions such as Student's t, normal, Hansen's skew t, exponential power, and skew exponential power (SEP) distributions are included as limiting or special cases in the SGT family. We show that the SGT distribution can be obtained as the scale mixture of the SEP and generalized gamma distributions. We investigate several properties of the SGT distribution and consider the maximum likelihood estimation of the location, scale, and skewness parameters under the assumption that the shape parameters are known. We show that if the shape parameters are estimated along with the location, scale, and skewness parameters, the influence function for the maximum likelihood estimators becomes unbounded. We obtain the necessary conditions to ensure the uniqueness of the maximum likelihood estimators for the location, scale, and skewness parameters, with known shape parameters. We provide a simple iterative re-weighting algorithm to compute the maximum likelihood estimates for the location, scale, and skewness parameters and show that this simple algorithm can be identified as an EM-type algorithm. We finally present two applications of the SGT distributions in robust estimation.  相似文献   

5.
Linear mixed models are widely used when multiple correlated measurements are made on each unit of interest. In many applications, the units may form several distinct clusters, and such heterogeneity can be more appropriately modelled by a finite mixture linear mixed model. The classical estimation approach, in which both the random effects and the error parts are assumed to follow normal distribution, is sensitive to outliers, and failure to accommodate outliers may greatly jeopardize the model estimation and inference. We propose a new mixture linear mixed model using multivariate t distribution. For each mixture component, we assume the response and the random effects jointly follow a multivariate t distribution, to conveniently robustify the estimation procedure. An efficient expectation conditional maximization algorithm is developed for conducting maximum likelihood estimation. The degrees of freedom parameters of the t distributions are chosen data adaptively, for achieving flexible trade-off between estimation robustness and efficiency. Simulation studies and an application on analysing lung growth longitudinal data showcase the efficacy of the proposed approach.  相似文献   

6.
An explicit closed form is derived for the characteristic function for the skew generalized t distribution studied by Arslan and Genç [The skew generalized t (SGT) distribution as the scale mixture of a skew exponential power distribution and its applications in robust estimation, Statistics 43(5) (2009), pp. 481–498]. The expression involves the Wright generalized hypergeometric Ψ–function.  相似文献   

7.
Abstract. We study the Jeffreys prior and its properties for the shape parameter of univariate skew‐t distributions with linear and nonlinear Student's t skewing functions. In both cases, we show that the resulting priors for the shape parameter are symmetric around zero and proper. Moreover, we propose a Student's t approximation of the Jeffreys prior that makes an objective Bayesian analysis easy to perform. We carry out a Monte Carlo simulation study that demonstrates an overall better behaviour of the maximum a posteriori estimator compared with the maximum likelihood estimator. We also compare the frequentist coverage of the credible intervals based on the Jeffreys prior and its approximation and show that they are similar. We further discuss location‐scale models under scale mixtures of skew‐normal distributions and show some conditions for the existence of the posterior distribution and its moments. Finally, we present three numerical examples to illustrate the implications of our results on inference for skew‐t distributions.  相似文献   

8.
Skew‐symmetric families of distributions such as the skew‐normal and skew‐t represent supersets of the normal and t distributions, and they exhibit richer classes of extremal behaviour. By defining a non‐stationary skew‐normal process, which allows the easy handling of positive definite, non‐stationary covariance functions, we derive a new family of max‐stable processes – the extremal skew‐t process. This process is a superset of non‐stationary processes that include the stationary extremal‐t processes. We provide the spectral representation and the resulting angular densities of the extremal skew‐t process and illustrate its practical implementation.  相似文献   

9.
This paper deals with the problem of maximum likelihood estimation for a mixture of skew Student-t-normal distributions, which is a novel model-based tool for clustering heterogeneous (multiple groups) data in the presence of skewed and heavy-tailed outcomes. We present two analytically simple EM-type algorithms for iteratively computing the maximum likelihood estimates. The observed information matrix is derived for obtaining the asymptotic standard errors of parameter estimates. A small simulation study is conducted to demonstrate the superiority of the skew Student-t-normal distribution compared to the skew t distribution. The proposed methodology is particularly useful for analyzing multimodal asymmetric data as produced by major biotechnological platforms like flow cytometry. We provide such an application with the help of an illustrative example.  相似文献   

10.
Emrah Altun 《Statistics》2019,53(2):364-386
In this paper, we introduce a new distribution, called generalized Gudermannian (GG) distribution, and its skew extension for GARCH models in modelling daily Value-at-Risk (VaR). Basic structural properties of the proposed distribution are obtained including probability density and cumulative distribution functions, moments, and stochastic representation. The maximum likelihood method is used to estimate unknown parameters of the proposed model and finite sample performance of maximum likelihood estimates are evaluated by means of Monte-Carlo simulation study. The real data application on Nikkei 225 index is given to demonstrate the performance of GARCH model specified under skew extension of GG innovation distribution against normal, Student's-t, skew normal and generalized error and skew generalized error distributions in terms of the accuracy of VaR forecasts. The empirical results show that the GARCH model with GG innovation distribution produces the most accurate VaR forecasts for all confidence levels.  相似文献   

11.
The main object of this article is to discuss maximum likelihood inference for the epsilon-skew-t distribution. Special cases of this distribution include the epsilon-skew-Cauchy and the epsilon-skew-normal distributions. We derive the information matrix for the maximum likelihood estimators. The approach is applied to a data set presenting significant amount of skewness and heavy tails. In the application we consider the epsilon-skew-t distribution with known and unknown degrees of freedom parameter, showing great flexibility in adjusting to skew data with heavy tails.  相似文献   

12.
Multivariate mixture regression models can be used to investigate the relationships between two or more response variables and a set of predictor variables by taking into consideration unobserved population heterogeneity. It is common to take multivariate normal distributions as mixing components, but this mixing model is sensitive to heavy-tailed errors and outliers. Although normal mixture models can approximate any distribution in principle, the number of components needed to account for heavy-tailed distributions can be very large. Mixture regression models based on the multivariate t distributions can be considered as a robust alternative approach. Missing data are inevitable in many situations and parameter estimates could be biased if the missing values are not handled properly. In this paper, we propose a multivariate t mixture regression model with missing information to model heterogeneity in regression function in the presence of outliers and missing values. Along with the robust parameter estimation, our proposed method can be used for (i) visualization of the partial correlation between response variables across latent classes and heterogeneous regressions, and (ii) outlier detection and robust clustering even under the presence of missing values. We also propose a multivariate t mixture regression model using MM-estimation with missing information that is robust to high-leverage outliers. The proposed methodologies are illustrated through simulation studies and real data analysis.  相似文献   

13.
In this paper, we develop a new general class of skew distributions with flexibility properties on the tails. Moreover, such class can provide heavy and light tails. Some of its mathematical properties are studied, including the quantile function, the moments, the moment generating function and the mean of deviations. New skew distributions are derived and used to construct new models capturing asymmetry inherent to data. The estimation of the class parameters is investigated by the method of maximum likelihood and the performance of the estimators is assessed by a simulation study. Applications of the proposed distribution are explored for two climate data sets. The first data set concerns the annual heat wave index and the second data set involves temperature and precipitation measures from the meteorological station located at Schiphol, Netherlands. Data fitting results show that our models perform better than the competitors.  相似文献   

14.
Finite mixtures of multivariate skew t (MST) distributions have proven to be useful in modelling heterogeneous data with asymmetric and heavy tail behaviour. Recently, they have been exploited as an effective tool for modelling flow cytometric data. A number of algorithms for the computation of the maximum likelihood (ML) estimates for the model parameters of mixtures of MST distributions have been put forward in recent years. These implementations use various characterizations of the MST distribution, which are similar but not identical. While exact implementation of the expectation-maximization (EM) algorithm can be achieved for ‘restricted’ characterizations of the component skew t-distributions, Monte Carlo (MC) methods have been used to fit the ‘unrestricted’ models. In this paper, we review several recent fitting algorithms for finite mixtures of multivariate skew t-distributions, at the same time clarifying some of the connections between the various existing proposals. In particular, recent results have shown that the EM algorithm can be implemented exactly for faster computation of ML estimates for mixtures with unrestricted MST components. The gain in computational time is effected by noting that the semi-infinite integrals on the E-step of the EM algorithm can be put in the form of moments of the truncated multivariate non-central t-distribution, similar to the restricted case, which subsequently can be expressed in terms of the non-truncated form of the central t-distribution function for which fast algorithms are available. We present comparisons to illustrate the relative performance of the restricted and unrestricted models, and demonstrate the usefulness of the recently proposed methodology for the unrestricted MST mixture, by some applications to three real datasets.  相似文献   

15.
In this article, we propose mixtures of skew Laplace normal (SLN) distributions to model both skewness and heavy-tailedness in the neous data set as an alternative to mixtures of skew Student-t-normal (STN) distributions. We give the expectation–maximization (EM) algorithm to obtain the maximum likelihood (ML) estimators for the parameters of interest. We also analyze the mixture regression model based on the SLN distribution and provide the ML estimators of the parameters using the EM algorithm. The performance of the proposed mixture model is illustrated by a simulation study and two real data examples.  相似文献   

16.
Abstract

The Birnbaum-Saunders (BS) distribution is an asymmetric probability model that is receiving considerable attention. In this article, we propose a methodology based on a new class of BS models generated from the Student-t distribution. We obtain a recurrence relationship for a BS distribution based on a nonlinear skew–t distribution. Model parameters estimators are obtained by means of the maximum likelihood method, which are evaluated by Monte Carlo simulations. We illustrate the obtained results by analyzing two real data sets. These data analyses allow the adequacy of the proposed model to be shown and discussed by applying model selection tools.  相似文献   

17.
This work presents a new linear calibration model with replication by assuming that the error of the model follows a skew scale mixture of the normal distributions family, which is a class of asymmetric thick-tailed distributions that includes the skew normal distribution and symmetric distributions. In the literature, most calibration models assume that the errors are normally distributed. However, the normal distribution is not suitable when there are atypical observations and asymmetry. The estimation of the calibration model parameters are done numerically by the EM algorithm. A simulation study is carried out to verify the properties of the maximum likelihood estimators. This new approach is applied to a real dataset from a chemical analysis.  相似文献   

18.
Abstract. The entropy and mutual information index are important concepts developed by Shannon in the context of information theory. They have been widely studied in the case of the multivariate normal distribution. We first extend these tools to the full symmetric class of multivariate elliptical distributions and then to the more flexible families of multivariate skew‐elliptical distributions. We study in detail the cases of the multivariate skew‐normal and skew‐t distributions. We implement our findings to the application of the optimal design of an ozone monitoring station network in Santiago de Chile.  相似文献   

19.
In this paper, an alternative skew Student-t family of distributions is studied. It is obtained as an extension of the generalized Student-t (GS-t) family introduced by McDonald and Newey [10]. The extension that is obtained can be seen as a reparametrization of the skewed GS-t distribution considered by Theodossiou [14]. A key element in the construction of such an extension is that it can be stochastically represented as a mixture of an epsilon-skew-power-exponential distribution [1] and a generalized-gamma distribution. From this representation, we can readily derive theoretical properties and easy-to-implement simulation schemes. Furthermore, we study some of its main properties including stochastic representation, moments and asymmetry and kurtosis coefficients. We also derive the Fisher information matrix, which is shown to be nonsingular for some special cases such as when the asymmetry parameter is null, that is, at the vicinity of symmetry, and discuss maximum-likelihood estimation. Simulation studies for some particular cases and real data analysis are also reported, illustrating the usefulness of the extension considered.  相似文献   

20.
Spatial generalised linear mixed models are used commonly for modelling non‐Gaussian discrete spatial responses. In these models, the spatial correlation structure of data is modelled by spatial latent variables. Most users are satisfied with using a normal distribution for these variables, but in many applications it is unclear whether or not the normal assumption holds. This assumption is relaxed in the present work, using a closed skew normal distribution for the spatial latent variables, which is more flexible and includes normal and skew normal distributions. The parameter estimates and spatial predictions are calculated using the Markov Chain Monte Carlo method. Finally, the performance of the proposed model is analysed via two simulation studies, followed by a case study in which practical aspects are dealt with. The proposed model appears to give a smaller cross‐validation mean square error of the spatial prediction than the normal prior in modelling the temperature data set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号