首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let X1X2,.be i.i.d. random variables and let Un= (n r)-1S?(n,r) h (Xi1,., Xir,) be a U-statistic with EUn= v, v unknown. Assume that g(X1) =E[h(X1,.,Xr) - v |X1]has a strictly positive variance s?2. Further, let a be such that φ(a) - φ(-a) =α for fixed α, 0 < α < 1, where φ is the standard normal d.f., and let S2n be the Jackknife estimator of n Var Un. Consider the stopping times N(d)= min {n: S2n: + n-12a-2},d > 0, and a confidence interval for v of length 2d,of the form In,d= [Un,-d, Un + d]. We assume that Var Un is unknown, and hence, no fixed sample size method is available for finding a confidence interval for v of prescribed width 2d and prescribed coverage probability α Turning to a sequential procedure, let IN(d),d be a sequence of sequential confidence intervals for v. The asymptotic consistency of this procedure, i.e. limd → 0P(v ∈ IN(d),d)=α follows from Sproule (1969). In this paper, the rate at which |P(v ∈ IN(d),d) converges to α is investigated. We obtain that |P(v ∈ IN(d),d) - α| = 0 (d1/2-(1+k)/2(1+m)), d → 0, where K = max {0,4 - m}, under the condition that E|h(X1, Xr)|m < ∞m > 2. This improves and extends recent results of Ghosh & DasGupta (1980) and Mukhopadhyay (1981).  相似文献   

2.
In many situations, the data given on a p-type Galton-Watson process Zn eP Np will consist of the total generation sizes |Zn| only. In that case, the maximum likelihood estimator ρML of the growth rate ρ is not observable, and the asymptotic properties of the most obvious estimators of ρ based on the |Zn|, as studied by Asmussen & Keiding (1978), show a crucial dependence on |ρ1|,ρ1 being a certain other eigenvalue of the offspring mean matrix. In fact, if |ρ1|2≤ρ, then the speed of convergence compares badly with ρML. In the present note, it is pointed out that recent results of Heyde (1981) on so-called Fibonacci branching processes provide further examples of this phenomenon, and an estimator with the same speed of convergence as ρML and based on the |Zn| alone is exhibited for the case p= 2, ρ12≥ρ.  相似文献   

3.
A Galton-Watson process in varying environments (Zn), with essentially constant offspring means, i.e. E(Zn)/mn→α∈(0, ∞), and exactly two rates of growth is constructed. The underlying sample space Ω can be decomposed into parts A and B such that (Zn)n grows like 2non A and like mnon B (m > 4).  相似文献   

4.
Let {X, Xn; n ≥ 1} be a sequence of real-valued iid random variables, 0 < r < 2 and p > 0. Let D = { A = (ank; 1 ≤ kn, n ≥ 1); ank, ? R and supn, k |an,k| < ∞}. Set Sn( A ) = ∑nk=1an, kXk for A ? D and n ≥ 1. This paper is devoted to determining conditions whereby E{supn ≥ 1, |Sn( A )|/n1/r}p < ∞ or E{supn ≥ 2 |Sn( A )|/2n log n)1/2}p < ∞ for every A ? D. This generalizes some earlier results, including those of Burkholder (1962), Choi and Sung (1987), Davis (1971), Gut (1979), Klass (1974), Siegmund (1969) and Teicher (1971).  相似文献   

5.
Consider n independent random variables Zi,…, Zn on R with common distribution function F, whose upper tail belongs to a parametric family F(t) = Fθ(t),t ≥ x0, where θ ∈ ? ? R d. A necessary and sufficient condition for the family Fθ, θ ∈ ?, is established such that the k-th largest order statistic Zn?k+1:n alone constitutes the central sequence yielding local asymptotic normality ( LAN ) of the loglikelihood ratio of the vector (Zn?i+1:n)1 i=kof the k largest order statistics. This is achieved for k = k(n)→n→∞∞ with k/n→n→∞ 0.

In the case of vectors of central order statistics ( Zr:n, Zr+1:n,…, Zs:n ), with r/n and s/n both converging to q ∈ ( 0,1 ), it turns out that under fairly general conditions any order statistic Zm:n with r ≤ m ≤s builds the central sequence in a pertaining LAN expansion.These results lead to asymptotically optimal tests and estimators of the underlying parameter, which depend on single order statistics only  相似文献   

6.
In this paper, by considering a (3n+1) -dimensional random vector (X0, XT, YT, ZT)T having a multivariate elliptical distribution, we derive the exact joint distribution of (X0, aTX(n), bTY[n], cTZ[n])T, where a, b, c∈?n, X(n)=(X(1), …, X(n))T, X(1)<···<X(n), is the vector of order statistics arising from X, and Y[n]=(Y[1], …, Y[n])T and Z[n]=(Z[1], …, Z[n])T denote the vectors of concomitants corresponding to X(n) ((Y[r], Z[r])T, for r=1, …, n, is the vector of bivariate concomitants corresponding to X(r)). We then present an alternate approach for the derivation of the exact joint distribution of (X0, X(r), Y[r], Z[r])T, for r=1, …, n. We show that these joint distributions can be expressed as mixtures of four-variate unified skew-elliptical distributions and these mixture forms facilitate the prediction of X(r), say, based on the concomitants Y[r] and Z[r]. Finally, we illustrate the usefulness of our results by a real data.  相似文献   

7.
Consider a nonparametric nonseparable regression model Y = ?(Z, U), where ?(Z, U) is strictly increasing in U and UU[0, 1]. We suppose that there exists an instrument W that is independent of U. The observable random variables are Y, Z, and W, all one-dimensional. We construct test statistics for the hypothesis that Z is exogenous, that is, that U is independent of Z. The test statistics are based on the observation that Z is exogenous if and only if V = FY|Z(Y|Z) is independent of W, and hence they do not require the estimation of the function ?. The asymptotic properties of the proposed tests are proved, and a bootstrap approximation of the critical values of the tests is shown to be consistent and to work for finite samples via simulations. An empirical example using the U.K. Family Expenditure Survey is also given. As a byproduct of our results we obtain the asymptotic properties of a kernel estimator of the distribution of V, which equals U when Z is exogenous. We show that this estimator converges to the uniform distribution at faster rate than the parametric n? 1/2-rate.  相似文献   

8.
For a general class of scalar stationary processes, essentially those for which the best linear predictor is the best predictor (in the mean square sense), it is shown that, under fairly minor additional conditions, the sample autocorrelations converge to the true values almost surely and hniformly in the lag, t, at a rate (T-1log T)1/2, where T is the sample size. For ARMA processes, if |t|(log T)a, a < ∞, the rate is the best possible, namely (T-1log log T)1/2. In particular the somewhat implausible condition, on the innovations, that E{ε(t)2| Ft-l} is constant is avoided in these results. The theorems are used to discuss autoregressive approximation. When the stationary process is a vector process the condition on the innovation sequence, ε(t), that E{ε(t)ε(t)| Ft-l} be constant, cannot be entirely avoided in relation to autoregressive approximation. This is also discussed.  相似文献   

9.
The largest value of the constant c for which holds over the class of random variables X with non-zero mean and finite second moment, is c=π. Let the random variable (r.v.) X with distribution function F(·) have non-zero mean and finite second moment. In studying a certain random walk problem (Daley, 1976) we sought a bound on the characteristic function of the form for some positive constant c. Of course the inequality is non-trivial only provided that . This note establishes that the best possible constant c =π. The wider relevance of the result is we believe that it underlines the use of trigonometric inequalities in bounding the (modulus of a) c.f. (see e.g. the truncation inequalities in §12.4 of Loève (1963)). In the present case the bound thus obtained is the best possible bound, and is better than the bound (2) |1-?(θ)| ≥ |θEX|-θ2EX2\2 obtained by applying the triangular inequality to the relation which follows from a two-fold integration by parts in the defining equation (*). The treatment of the counter-example furnished below may also be of interest. To prove (1) with c=π, recall that sin u > u(1-u/π) (all real u), so Since |E sinθX|-|E sin(-θX)|, the modulus sign required in (1) can be inserted into (4). Observe that since sin u > u for u < 0, it is possible to strengthen (4) to (denoting max(0,x) by x+) To show that c=π is the best possible constant in (1), assume without loss of generality that EX > 0, and take θ > 0. Then (1) is equivalent to (6) c < θEX2/{EX-|1-?(θ)|/θ} for all θ > 0 and all r.v.s. X with EX > 0 and EX2. Consider the r.v. where 0 < x < 1 and 0 < γ < ∞. Then EX=1, EX2=1+γx2, From (4) it follows that |1-?(θ)| > 0 for 0 < |θ| <π|EX|/EX2 but in fact this positivity holds for 0 < |θ| < 2π|EX|/EX2 because by trigonometry and the Cauchy-Schwartz inequality, |1-?(θ)| > |Re(1-?(θ))| = |E(1-cosθX)| = 2|E sin2θX/2| (10) >2(E sinθX/2)2 (11) >(|θEX|-θ2EX2/2π)2/2 > 0, the inequality at (11) holding provided that |θEX|-θ2EX2/2π > 0, i.e., that 0 < |θ| < 2π|EX|/EX2. The random variable X at (7) with x= 1 shows that the range of positivity of |1-?(θ)| cannot in general be extended. If X is a non-negative r.v. with finite positive mean, then the identity shows that (1-?(θ))/iθEX is the c.f. of a non-negative random variable, and hence (13) |1-?(θ)| < |θEX| (all θ). This argument fans if pr{X < 0}pr{X> 0} > 0, but as a sharper alternative to (14) |1-?(θ)| < |θE|X||, we note (cf. (2) and (3)) first that (15) |1-?(θ)| < |θEX| +θ2EX2/2. For a bound that is more precise for |θ| close to 0, |1-?(θ)|2= (Re(1-?(θ)))2+ (Im?(θ))2 <(θ2EX2/2)2+(|θEX| +θ2EX2-/π)2, so (16) |1-?(θ)| <(|θEX| +θ2EX2-/π) + |θ|3(EX2)2/8|EX|.  相似文献   

10.
We study the behavior of bivariate empirical copula process 𝔾 n (·, ·) on pavements [0, k n /n]2 of [0, 1]2, where k n is a sequence of positive constants fulfilling some conditions. We provide a upper bound for the strong approximation of 𝔾 n (·, ·) by a Gaussian process when k n /n↘γ as n → ∞, where 0 ≤ γ ≤1.  相似文献   

11.
ON THE NUMBER OF RECORDS NEAR THE MAXIMUM   总被引:3,自引:0,他引:3  
Recent work has considered properties of the number of observations Xj, independently drawn from a discrete law, which equal the sample maximum X(n) The natural analogue for continuous laws is the number Kn(a) of observations in the interval (X(n)a, X(n)], where a > 0. This paper derives general expressions for the law, first moment, and probability generating function of Kn(a), mentioning examples where evaluations can be given. It seeks limit laws for n→ and finds a central limit result when a is fixed and the population law has a finite right extremity. Whenever the population law is attracted to an extremal law, a limit theorem can be found by letting a depend on n in an appropriate manner; thus the limit law is geometric when the extremal law is the Gumbel type. With these results, the paper obtains limit laws for ‘top end’ spacings X(n) - X(n-j) with j fixed.  相似文献   

12.
As the sample size increases, the coefficient of skewness of the Fisher's transformation z= tanh-1r, of the correlation coefficient decreases much more rapidly than the excess of its kurtosis. Hence, the distribution of standardized z can be approximated more accurately in terms of the t distribution with matching kurtosis than by the unit normal distribution. This t distribution can, in turn be subjected to Wallace's approximation resulting in a new normal approximation for the Fisher's z transform. This approximation, which can be used to estimate the probabilities, as well as the percentiles, compares favorably in both accuracy and simplicity, with the two best earlier approximations, namely, those due to Ruben (1966) and Kraemer (1974). Fisher (1921) suggested approximating distribution of the variance stabilizing transform z=(1/2) log ((1 +r)/(1r)) of the correlation coefficient r by the normal distribution with mean = (1/2) log ((1 + p)/(lp)) and variance =l/(n3). This approximation is generally recognized as being remarkably accurate when ||Gr| is moderate but not so accurate when ||Gr| is large, even when n is not small (David (1938)). Among various alternatives to Fisher's approximation, the normalizing transformation due to Ruben (1966) and a t approximation due to Kraemer (1973), are interesting on the grounds of novelty, accuracy and/or aesthetics. If r?= r/√ (1r2) and r?|Gr = |Gr/√(1|Gr2), then Ruben (1966) showed that (1) gn (r,|Gr) ={(2n5)/2}1/2r?r{(2n3)/2}1/2r?|GR, {1 + (1/2)(r?r2+r?|Gr2)}1/2 is approximately unit normal. Kraemer (1973) suggests approximating (2) tn (r, |Gr) = (r|GR1) √ (n2), √(11r2) √(1|Gr2) by a Student's t variable with (n2) degrees of freedom, where after considering various valid choices for |Gr1 she recommends taking |Gr1= |Gr*, the median of r given n and |Gr.  相似文献   

13.
14.
For a continuous random variable X with support equal to (a, b), with c.d.f. F, and g: Ω1 → Ω2 a continuous, strictly increasing function, such that Ω1∩Ω2?(a, b), but otherwise arbitrary, we establish that the random variables F(X) ? F(g(X)) and F(g? 1(X)) ? F(X) have the same distribution. Further developments, accompanied by illustrations and observations, address as well the equidistribution identity U ? ψ(U) = dψ? 1(U) ? U for UU(0, 1), where ψ is a continuous, strictly increasing and onto function, but otherwise arbitrary. Finally, we expand on applications with connections to variance reduction techniques, the discrepancy between distributions, and a risk identity in predictive density estimation.  相似文献   

15.
Let {W(s); 8 ≥ 0} be a standard Wiener process, and let βN = (2aN (log (N/aN) + log log N)-1/2, 0 < αNN < ∞, where αN↑ and αN/N is a non-increasing function of N, and define γN(t) = βN[W(nN + taN) ? W(nN)), 0 ≥ t ≥ 1, with nN = NaN. Let K = {x ? C[0,1]: x is absolutely continuous, x(0) = 0 and }. We prove that, with probability one, the sequence of functions {γN(t), t ? [0,1]} is relatively compact in C[0,1] with respect to the sup norm ||·||, and its set of limit points is K. With aN = N, our result reduces to Strassen's well-known theorem. Our method of proof follows Strassen's original, direct approach. The latter, however, contains an oversight which, in turn, renders his proof invalid. Strassen's theorem is true, of course, and his proof can also be rectified. We do this in a somewhat more general context than that of his original theorem. Applications to partial sums of independent identically distributed random variables are also considered.  相似文献   

16.
For non-negative integral valued interchangeable random variables v1, v2,…,vn, Takács (1967, 70) has derived the distributions of the statistics ?n' ?1n' ?(c)n and ?(-c)n concerning the partial sums Nr = v1 + v2 + ··· + vrr = 1,…,n. This paper deals with the joint distributions of some other statistics viz., (α(c)n, δ(c)n, Zn), (β(c)n, Zn) and (β(-c)n, Zn) concerning the partial sums Nr = ε1 + ··· + εrr = 1,2,…,n, of geometric random variables ε1, ε2,…,εn.  相似文献   

17.
Let X U (1) < X U (2) < … < X U ( n ) < … be the sequence of the upper record values from a population with common distribution function F. In this paper, we first give a theorem to characterize the generalized mixtures of geometric distribution by the relation between E[(X U ( n +1)X U ( n ))2|X U ( n ) = x] and the function of the failure rate of the distribution, for any positive integer n. Secondly, we also use the same relation to characterize the generalized mixtures of exponential distribution. The characterizing relations were motivated by the work of Balakrishnan and Balasubramanian (1995). Received: March 31, 1999; revised version: November 22, 1999  相似文献   

18.
A clarification is given of the main result (1.1) in Communications in Statistics: Theory and Methods 34:753–766. The term {1 + 6a(r ? a)}1/3 is to be understood as sgn(1 + 6a(r ? a)) | 1 + 6a(r ? a)|1/3. The result is expressed in a more user-friendly form. An issue is raised regarding the common usage of the expression x 1/n when n is even.  相似文献   

19.
If (X1,Y1), …, (Xn,Yn) is a sequence of independent identically distributed Rd × R-valued random vectors then Nadaraya (1964) and Watson (1964) proposed to estimate the regression function m(x) = ? {Y1|X1 = x{ by where K is a known density and {hn} is a sequence of positive numbers satisfying certain properties. In this paper a variety of conditions are given for the strong convergence to 0 of essXsup|mn (X)-m(X)| (here X is independent of the data and distributed as X1). The theorems are valid for all distributions of X1 and for all sequences {hn} satisfying hn → 0 and nh/log n→0.  相似文献   

20.
Consider the process with, cf. (1.2) on page 265 in B1, X1, …, XN a sample from a distribution F and, for i = 1, …, N, R |x 1 , - q 1 ø| , the rank of |X1 - q1ø| among |X1 - q1ø|, …, |XN - qNø|. It is shown that, under certain regularity conditions on F and on the constants pi and qi, TøN(t) is asymptotically approximately a linear function of ø uniformly in t and in ø for |ø| ≤ C. The special case where the pi and the qi, are independent of i is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号