首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Rayleigh distribution has been used to model right skewed data. Rayleigh [On the resultant of a large number of vibrations of the some pitch and of arbitrary phase. Philos Mag. 1880;10:73–78] derived it from the amplitude of sound resulting from many important sources. In this paper, a new goodness-of-fit test for the Rayleigh distribution is proposed. This test is based on the empirical likelihood ratio methodology proposed by Vexler and Gurevich [Empirical likelihood ratios applied to goodness-of-fit tests based on sample entropy. Comput Stat Data Anal. 2010;54:531–545]. Consistency of the proposed test is derived. It is shown that the distribution of the proposed test does not depend on scale parameter. Critical values of the test statistic are computed, through a simulation study. A Monte Carlo study for the power of the proposed test is carried out under various alternatives. The performance of the test is compared with some well-known competing tests. Finally, an illustrative example is presented and analysed.  相似文献   

2.
In this work, non parametric tests are proposed for testing the homogeneity of two or more populations. The tests are based on recently obtained characterizations. The test procedure is based on the permutation bootstrap technique. For the two-sample case the new tests are compared with permutation tests based on the empirical characteristic function and some other tests. The comparison is fulfilled via a Monte Carlo simulation.  相似文献   

3.
The Inverse Gaussian (IG) distribution is commonly introduced to model and examine right skewed data having positive support. When applying the IG model, it is critical to develop efficient goodness-of-fit tests. In this article, we propose a new test statistic for examining the IG goodness-of-fit based on approximating parametric likelihood ratios. The parametric likelihood ratio methodology is well-known to provide powerful likelihood ratio tests. In the nonparametric context, the classical empirical likelihood (EL) ratio method is often applied in order to efficiently approximate properties of parametric likelihoods, using an approach based on substituting empirical distribution functions for their population counterparts. The optimal parametric likelihood ratio approach is however based on density functions. We develop and analyze the EL ratio approach based on densities in order to test the IG model fit. We show that the proposed test is an improvement over the entropy-based goodness-of-fit test for IG presented by Mudholkar and Tian (2002). Theoretical support is obtained by proving consistency of the new test and an asymptotic proposition regarding the null distribution of the proposed test statistic. Monte Carlo simulations confirm the powerful properties of the proposed method. Real data examples demonstrate the applicability of the density-based EL ratio goodness-of-fit test for an IG assumption in practice.  相似文献   

4.
The empirical likelihood (EL) technique is a powerful nonparametric method with wide theoretical and practical applications. In this article, we use the EL methodology in order to develop simple and efficient goodness-of-fit tests for normality based on the dependence between moments that characterizes normal distributions. The new empirical likelihood ratio (ELR) tests are exact and are shown to be very powerful decision rules based on small to moderate sample sizes. Asymptotic results related to the Type I error rates of the proposed tests are presented. We present a broad Monte Carlo comparison between different tests for normality, confirming the preference of the proposed method from a power perspective. A real data example is provided.  相似文献   

5.
Testing the equality of two survival distributions can be difficult in a prevalent cohort study when non random sampling of subjects is involved. Due to the biased sampling scheme, independent censoring assumption is often violated. Although the issues about biased inference caused by length-biased sampling have been widely recognized in statistical, epidemiological and economical literature, there is no satisfactory solution for efficient two-sample testing. We propose an asymptotic most efficient nonparametric test by properly adjusting for length-biased sampling. The test statistic is derived from a full likelihood function, and can be generalized from the two-sample test to a k-sample test. The asymptotic properties of the test statistic under the null hypothesis are derived using its asymptotic independent and identically distributed representation. We conduct extensive Monte Carlo simulations to evaluate the performance of the proposed test statistics and compare them with the conditional test and the standard logrank test for different biased sampling schemes and right-censoring mechanisms. For length-biased data, empirical studies demonstrated that the proposed test is substantially more powerful than the existing methods. For general left-truncated data, the proposed test is robust, still maintains accurate control of type I error rate, and is also more powerful than the existing methods, if the truncation patterns and right-censoring patterns are the same between the groups. We illustrate the methods using two real data examples.  相似文献   

6.
In this article, we propose a new empirical likelihood method for linear regression analysis with a right censored response variable. The method is based on the synthetic data approach for censored linear regression analysis. A log-empirical likelihood ratio test statistic for the entire regression coefficients vector is developed and we show that it converges to a standard chi-squared distribution. The proposed method can also be used to make inferences about linear combinations of the regression coefficients. Moreover, the proposed empirical likelihood ratio provides a way to combine different normal equations derived from various synthetic response variables. Maximizing this empirical likelihood ratio yields a maximum empirical likelihood estimator which is asymptotically equivalent to the solution of the estimating equation that are optimal linear combination of the original normal equations. It improves the estimation efficiency. The method is illustrated by some Monte Carlo simulation studies as well as a real example.  相似文献   

7.
The literature on testing the unit root hypothesis in the presence of GARCH errors is extended. A new test based upon the combination of local-to-unity detrending and joint maximum likelihood estimation of the autoregressive parameter and GARCH process is presented. The finite sample distribution of the test is derived under alternative decisions regarding the deterministic terms employed. Using Monte Carlo simulation, the newly proposed ML t-test is shown to exhibit increased power of relative to rival tests. Finally, the empirical relevance of the simulation results is illustrated via an application to real GDP for the UK.  相似文献   

8.
An adaptive test is proposed for the one-way layout. This test procedure uses the order statistics of the combined data to obtain estimates of percentiles, which are used to select an appropriate set of rank scores for the one-way test statistic. This test is designed to have reasonably high power over a range of distributions. The adaptive procedure proposed for a one-way layout is a generalization of an existing two-sample adaptive test procedure. In this Monte Carlo study, the power and significance level of the F-test, the Kruskal-Wallis test, the normal scores test, and the adaptive test were evaluated for the one-way layout. All tests maintained their significance level for data sets having at least 24 observations. The simulation results show that the adaptive test is more powerful than the other tests for skewed distributions if the total number of observations equals or exceeds 24. For data sets having at least 60 observations the adaptive test is also more powerful than the F-test for some symmetric distributions.  相似文献   

9.
We derive general distribution tests based on the method of maximum entropy (ME) density. The proposed tests are derived from maximizing the differential entropy subject to given moment constraints. By exploiting the equivalence between the ME and maximum likelihood (ML) estimates for the general exponential family, we can use the conventional likelihood ratio (LR), Wald, and Lagrange multiplier (LM) testing principles in the maximum entropy framework. In particular, we use the LM approach to derive tests for normality. Monte Carlo evidence suggests that the proposed tests are compatible with and sometimes outperform some commonly used normality tests. We show that the proposed tests can be extended to tests based on regression residuals and non-i.i.d. data in a straightforward manner. An empirical example on production function estimation is presented.  相似文献   

10.
Sample entropy based tests, methods of sieves and Grenander estimation type procedures are known to be very efficient tools for assessing normality of underlying data distributions, in one-dimensional nonparametric settings. Recently, it has been shown that the density based empirical likelihood (EL) concept extends and standardizes these methods, presenting a powerful approach for approximating optimal parametric likelihood ratio test statistics, in a distribution-free manner. In this paper, we discuss difficulties related to constructing density based EL ratio techniques for testing bivariate normality and propose a solution regarding this problem. Toward this end, a novel bivariate sample entropy expression is derived and shown to satisfy the known concept related to bivariate histogram density estimations. Monte Carlo results show that the new density based EL ratio tests for bivariate normality behave very well for finite sample sizes. To exemplify the excellent applicability of the proposed approach, we demonstrate a real data example.  相似文献   

11.
To model growth curves in survival analysis and biological studies the logistic distribution has been widely used. In this article, we propose a goodness-of-fit test for the logistic distribution based on an estimate of the Gini index. The exact distribution of the proposed test statistic and also its asymptotic distribution are presented. In order to compute the proposed test statistic, parameters of the logistic distribution are estimated by approximate maximum likelihood estimators (AMLEs), which are simple explicit estimators. Through Monte Carlo simulations, power comparisons of the proposed test with some known competing tests are carried. Finally, an illustrative example is presented and analyzed.  相似文献   

12.
In many case-control studies, it is common to utilize paired data when treatments are being evaluated. In this article, we propose and examine an efficient distribution-free test to compare two independent samples, where each is based on paired observations. We extend and modify the density-based empirical likelihood ratio test presented by Gurevich and Vexler [7] to formulate an appropriate parametric likelihood ratio test statistic corresponding to the hypothesis of our interest and then to approximate the test statistic nonparametrically. We conduct an extensive Monte Carlo study to evaluate the proposed test. The results of the performed simulation study demonstrate the robustness of the proposed test with respect to values of test parameters. Furthermore, an extensive power analysis via Monte Carlo simulations confirms that the proposed method outperforms the classical and general procedures in most cases related to a wide class of alternatives. An application to a real paired data study illustrates that the proposed test can be efficiently implemented in practice.  相似文献   

13.
We consider the issue of performing accurate small-sample testing inference in beta regression models, which are useful for modeling continuous variates that assume values in (0,1), such as rates and proportions. We derive the Bartlett correction to the likelihood ratio test statistic and also consider a bootstrap Bartlett correction. Using Monte Carlo simulations we compare the finite sample performances of the two corrected tests to that of the standard likelihood ratio test and also to its variant that employs Skovgaard's adjustment; the latter is already available in the literature. The numerical evidence favors the corrected tests we propose. We also present an empirical application.  相似文献   

14.
The empirical likelihood ratio (ELR) test for the problem of testing for normality is derived in this article. The sampling properties of the ELR test and four other commonly used tests are provided and analyzed using the Monte Carlo simulation technique. The power comparisons against a wide range of alternative distributions show that the ELR test is the most powerful of these tests in certain situations.  相似文献   

15.
Various exact tests for statistical inference are available for powerful and accurate decision rules provided that corresponding critical values are tabulated or evaluated via Monte Carlo methods. This article introduces a novel hybrid method for computing p‐values of exact tests by combining Monte Carlo simulations and statistical tables generated a priori. To use the data from Monte Carlo generations and tabulated critical values jointly, we employ kernel density estimation within Bayesian‐type procedures. The p‐values are linked to the posterior means of quantiles. In this framework, we present relevant information from the Monte Carlo experiments via likelihood‐type functions, whereas tabulated critical values are used to reflect prior distributions. The local maximum likelihood technique is employed to compute functional forms of prior distributions from statistical tables. Empirical likelihood functions are proposed to replace parametric likelihood functions within the structure of the posterior mean calculations to provide a Bayesian‐type procedure with a distribution‐free set of assumptions. We derive the asymptotic properties of the proposed nonparametric posterior means of quantiles process. Using the theoretical propositions, we calculate the minimum number of needed Monte Carlo resamples for desired level of accuracy on the basis of distances between actual data characteristics (e.g. sample sizes) and characteristics of data used to present corresponding critical values in a table. The proposed approach makes practical applications of exact tests simple and rapid. Implementations of the proposed technique are easily carried out via the recently developed STATA and R statistical packages.  相似文献   

16.
Hybrid test for the hypothesis of symmetry   总被引:1,自引:1,他引:0  
In recent years, McWilliams and Tajuddin have proposed new and more powerful non-parametric tests of symmetry for continuous distributions about a known center. In this paper, we propose a simple non-parametric two-stage procedure based on the sign test and a percentile-modified two-sample Wilcoxon test. The small-sample properties of this test, Tajuddin's test, McWilliams' test and a modified runs test of Modarres and Gastwirth are investigated in a Monte Carlo simulation study. The simulations indicate that, for a wide variety of asymmetric alternatives in the lambda family, the hybrid test is more powerful than are existing tests in the literature.  相似文献   

17.

Function-based hypothesis testing in two-sample location-scale models has been addressed for uncensored data using the empirical characteristic function. A test of adequacy in censored two-sample location-scale models is lacking, however. A plug-in empirical likelihood approach is used to introduce a test statistic, which, asymptotically, is not distribution free. Hence for practical situations bootstrap is necessary for performing the test. A multiplier bootstrap and a model appropriate resampling procedure are given to approximate critical values from the null asymptotic distribution. Although minimum distance estimators of the location and scale are deployed for the plug-in, any consistent estimators can be used. Numerical studies are carried out that validate the proposed testing method, and real example illustrations are given.

  相似文献   

18.
We propose a new goodness-of-fit test for normal and lognormal distributions with unknown parameters and type-II censored data. This test is a generalization of Michael's test for censored samples, which is based on the empirical distribution and a variance stabilizing transformation. We estimate the parameters of the model by using maximum likelihood and Gupta's methods. The quantiles of the distribution of the test statistic under the null hypothesis are obtained through Monte Carlo simulations. The power of the proposed test is estimated and compared to that of the Kolmogorov–Smirnov test also using simulations. The new test is more powerful than the Kolmogorov–Smirnov test in most of the studied cases. Acceptance regions for the PP, QQ and Michael's stabilized probability plots are derived, making it possible to visualize which data contribute to the decision of rejecting the null hypothesis. Finally, an illustrative example is presented.  相似文献   

19.
This paper presents some powerful omnibus tests for multivariate normality based on the likelihood ratio and the characterizations of the multivariate normal distribution. The power of the proposed tests is studied against various alternatives via Monte Carlo simulations. Simulation studies show our tests compare well with other powerful tests including multivariate versions of the Shapiro–Wilk test and the Anderson–Darling test.  相似文献   

20.
Two-sample comparisons belonging to basic class of statistical inference are extensively applied in practice. There is a rich statistical literature regarding different parametric methods to address these problems. In this context, most of the powerful techniques are assumed to be based on normally distributed populations. In practice, the alternative distributions of compared samples are commonly unknown. In this case, one can propose a combined test based on the following decision rules: (a) the likelihood-ratio test (LRT) for equality of two normal populations and (b) the Shapiro–Wilk (S-W) test for normality. The rules (a) and (b) can be merged by, e.g., using the Bonferroni correction technique to offer the correct comparison of the samples distribution. Alternatively, we propose the exact density-based empirical likelihood (DBEL) ratio test. We develop the tsc package as the first R package available to perform the two-sample comparisons using the exact test procedures: the LRT; the LRT combined with the S-W test; as well as the newly developed DBEL ratio test. We demonstrate Monte Carlo (MC) results and a real data example to show an efficiency and excellent applicability of the developed procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号