首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
We collected ants from six urban and one forest land-use types in Raleigh, NC to examine the effects of urbanization on species richness and assemblage composition. Since urban areas are warmer (i.e., heat island effect) we also tested if cities were inhabited by species from warmer/drier environments. Species richness was lower in industrial areas relative to other urban and natural environments. There are two distinct ant assemblages; 1) areas with thick canopy cover, and 2) more disturbed open urban areas. Native ant assemblages in open environments have more southwestern (i.e., warmer/drier) distributions than forest assemblages. High native species richness suggests that urban environments may allow species to persist that are disappearing from natural habitat fragments. The subset of species adapted to warmer/drier environments indicates that urban areas may facilitate the movement of some species. This suggests that urban adapted ants may be particularly successful at tracking future climate change.  相似文献   

2.
Ecologists increasingly appreciate the central role that urban biodiversity plays in ecosystems, however much urban biodiversity is neglected, especially some very diverse groups of invertebrates. For the first time in southern Europe, land snail communities are analysed in four urban habitats along a geographical gradient of three cities, using quantitative methods and assessing the relative roles of local environmental conditions (“distance from sea”, “distance from city centre”, “vegetation cover”) and spatial effects by principal coordinate analysis of neighbour matrices, redundancy analysis and variation partitioning. A total of 53 species was recorded, a richness similar to that of natural areas. At habitat level, species richness did not show a clear increasing trend from more to less urbanized habitats, but rather a homogeneous pattern. At city level, study areas hosted rather heterogeneous species assemblages and biotic homogenization did not seem to have any impact; indeed, only three species could be considered alien. Variation partitioning showed that land snail communities were mostly structured by environmental factors, even when spatial structures independent of measured environmental variables were included: “vegetation cover” and “distance from city centre” were the environmental variables that explained most of the variation in species composition. The lack of strong spatial structure also unexpectedly suggested that transport by humans aids dispersal of organisms with low mobility, which are usually limited by spatial constraints in natural environments. These results provide ecological and conservation implications for other invertebrate groups, suggesting to set priorities in management strategies that include habitat conservation at local scale.  相似文献   

3.
Mediterranean-type ecosystems are one of the most affected environments by habitat loss and fragmentation due to urban development, however only few studies have evaluated the effects of urbanization on the biodiversity of remnant fragments in these ecosystems. This study aims to evaluate the effects of urban development over small mammal assemblages inhabiting isolated forest fragments of an urban area of Chilean Mediterranean zone. We compared abundance and richness of small mammal assemblages of six remnant fragments within an urban matrix, and six fragments similar in area and habitat characteristics with those of urban area, but surrounded by a rural matrix. We found that small mammal assemblages differ considerably among fragments types (urban vs rural), with lack of endemic species from urban fragments and with high proportion of introduced rodents in urban fragments. Furthermore abundance of small mammals was higher in rural than in urban fragments. In urban areas small mammal abundance and richness were not correlated with any of the explanatory variables assessed (woody cover, flora heterogeneity, fragment area, perimeter/area ratio). However in rural fragments small mammal richness was negatively correlated with flora heterogeneity and the abundance of small mammals was positively correlated with perimeter/area ratio. These results reveal important differences within the effects of fragmentation over small mammal assemblages among the two types of fragments assessed. Our findings suggest that in forest fragments isolated by urbanization, larger areas with good quality habitats are not sufficient to maintain native small mammal population.  相似文献   

4.
Urbanisation is one of the most severe drivers of current global biodiversity loss and has contributed to severe declines in many amphibian species. The aim of this study was to determine whether artificial stormwater ponds, designed to control water flow, can act as refuges for amphibians in urban areas. Moreover, we analysed the influence of habitat and landscape quality on amphibian species richness of 46 stormwater ponds (STOPON) in comparison to 46 control ponds (CONTROL).Our study revealed that environmental conditions clearly varied between STOPON and CONTROL. The most pronounced differences were that STOPON were larger, shallower, sunnier, more isolated by streets and had a greater cover of built-up area and lower cover of arable land surrounding them. Nevertheless, the amphibian assemblages of STOPON and CONTROL were very similar. All nine amphibian species (including three threatened species) detected in this study were found in both pond types. Moreover, species richness (2.8 ± 0.2 vs. 2.3 ± 0.2) and the frequency of each species did not differ between STOPON and CONTROL. The only exception was Pelophylax spp., which occurred more regularly in STOPON. Both habitat and landscape quality affected amphibian species richness; however, the explanatory power of the habitat models was about twice as high as those of the landscape models.In conclusion, stormwater ponds play an important role for amphibians in urban areas. In comparison to CONTROL, the low landscape quality in the surroundings of STOPON seemed to be compensated by a higher habitat quality due to regular management.  相似文献   

5.
Desert landscaping has become a dominant land cover type in arid US cities and often includes native plant species. Does replacement of native plant distribution in urban areas also reestablish ecological functioning characteristic of natural deserts? We compared ecological processes in three landscape types that are common to the metropolitan area of Phoenix, Arizona (USA): residential desert yards created from former lawns, Sonoran Desert preserves within the city, and Sonoran Desert preserves outside the city boundaries. Canopy cover, abundance of herbivorous insects, and soil properties (concentration of inorganic nitrogen (N), soil moisture and organic matter content, and water-holding capacity) were higher in residential desert yards than in native desert sites located both within and outside of the city. Furthermore, soil resources in desert yards were not organized around plant canopies, departing from the predictable resource island pattern that is characteristic of natural deserts. Intentional human manipulation and land use history accounts for these differences, while the urban environment contributes only subtly to soil N concentrations beneath plant canopies. While the use of desert landscaping may have important water conservation benefits, it does not help to mitigate the well-documented excess of reactive N within the Phoenix metropolitan area.  相似文献   

6.
Anthropogenic alteration of the landscape has facilitated plant community change and non-native species invasion in urban areas. We used species occurrence data from over 2000 wetlands within the Chicago metropolitan region to classify urban wetlands into community types and examined non-native species composition across community types. Non-native species were widespread across the region, occurring in over 99% of wetlands. On average, 35% of the plant species in individual wetlands were non-native. A single non-native species, Phalaris arundinacea, was present in 74% of wetlands. Six wetland community types were identified (wet meadows, marshes, forested wetlands, farmed wetlands/mudflats, roadside marshes, and an undetermined wetland type), with each having aggressively spreading non-natives amongst the most common plant species. We conducted canonical correspondence analysis to evaluate the contribution of surrounding land cover, roads, and location of wetlands to plant community composition in these wetlands, and found that similar changes to the landscape have resulted in similar combinations of native and non-native species. Differences in species composition reflected spatial gradients in land use from urban to rural areas across the region, as well as proximity to major roads. Anthropogenic drivers have resulted in profound and pervasive changes to wetland communities across the region, creating novel habitats and ultimately novel community types.  相似文献   

7.
Coastal areas are rapidly developing due to population growth and the appeal of coastlines. In order to gain insight into how land use/cover affects carbon (C) storage in a coastal context, we examined soil and vegetation C and soil nitrogen (N) across land uses near Apalachicola, FL. Forested wetlands had the greatest soil C and N storage, while natural pine forests and pine plantations had the least. In paired plots, urban lawns had significantly greater mineral soil N content compared to urban forest remnants. Total ecosystem C (soil + vegetation) was higher in forested wetlands than all other land uses/covers combined due to the high organic content of those wetland soils. Urban forest remnants and lawns had greater total ecosystem C than natural pine forests and pine plantations, which likely reflects the differential influence of prescribed fire and less frequent anthropogenic disturbances between the rural and urban areas, respectively. Projections of land use change in Franklin County, FL combined with these data suggest that increases in C storage are possible with continued urbanization along the Gulf Coast, if forest remnants are left and lawns are incorporated in built-up areas. However, this study does not account for C emissions during land conversion, or any emissions associated with maintaining urban built-up and residential areas. A better understanding of land use/cover influences on C pools has applications for planning and development, as well as ecological and environmental protection in the region.  相似文献   

8.
There are a variety of land use types in urbanized areas that may have different effects on the ecological characteristics of patches of natural vegetation. In particular, residential housing and industrial land-use may have different effects on adjacent forest communities. We tested this hypothesis by examining the vegetation of forested wetlands in a densely urban region, northeastern New Jersey. Wetlands embedded in industrial areas were much less invaded by exotic plant species than were wetlands embedded in residential areas, as reflected in the number of exotic species, the fraction of the total flora that was exotic, and their frequencies of occurrence. Few other structural characteristics of the vegetation differed between the two types of urban areas. We suggest that the management of land adjacent to forest edges may explain this surprising result. The low rate of invasion of wetlands within industrial areas suggests they could have high conservation value in urban ecosystems.  相似文献   

9.
How urban habitats contribute to biodiversity conservation is a key challenge in a rapidly urbanising world. Urban parks can provide important habitats for native species, but previous studies are geographically biased; fast growing megacities, in particular in South America, are clearly understudied. To assess habitat functions and underlying drivers in parks of Santiago de Chile, we analysed the assemblages of wild growing plant species in two ubiquitous park habitat types (grasslands, wooded areas) in 15 parks (150 plots) along an urban-rural gradient. We first used linear contrasts to compare species richness, beta diversity and the proportion of introduced species. We then tested for the explanatory value of environmental variables operating at different spatial scales (plot, park, urban matrix). Unlike in most previous studies, biodiversity patterns were not related to the position of the parks on the urban-rural gradient. Introduced species, mostly from Europe, generally dominated both habitat types (>90 %). Socio-economic (population growth or density), but not spatial, variables were retained in most models. Maintenance intensity was most influential in predicting species assemblages, complemented by park age in wooded areas. A high proportion of European grassland species indicates a trend of homogenisation in park grassland at a cross-continental scale. We conclude that habitat functions of urban parks for native species that have been mainly demonstrated for Europe cannot be generalised to South American megacities. This highlights the need for innovative and locally appropriate conservation approaches (e.g., re-introduction of native species) to foster biodiversity functions in urban parks of South American megacities.  相似文献   

10.
High levels of endemism, the sensitivity of species that have evolved without humans, and the invasion of exotic species have all contributed to severe depletion of indigenous biodiversity in New Zealand. We considered the contribution that urban restoration can make to maximising biodiversity by analysing landcover patterns from two national databases along an urban–rural gradient. Thirteen of 20 land environments in New Zealand are represented in cities, and nearly three-quarters of all acutely threatened land environments are represented within 20 km of city cores nationally. Despite this, remaining indigenous landcover is low within urban cores, with less than 2% on average, but increasing to more than 10% on average in the periurban zone. Threatened lowland environments are most commonly represented within cities, and least represented within protected natural areas. Restoration of existing urban habitat is insufficient to halt biodiversity loss. Ecosystem reconstruction is required to achieve a target of 10% indigenous cover within cities. A co-ordinated national urban biodiversity plan to address issues beyond a local and regional focus is needed. Analysis of national patterns of urban land environments, indigenous cover and remnant ecosystems will support action at a regional and local level while enhancing national and global biodiversity goals.  相似文献   

11.
Conservation of biodiversity in urban areas has become crucial to urban green area management. There are several legislative solutions for preservation of species and habitats in cities. One of them is ‘ecological lands’ – a low-restrictive form of protected areas in Poland. We aimed to assess their efficiency in vascular flora biodiversity conservation in the urban environment in Poznań (W Poland; 550,000 inhabitants). We hypothesized that ecological lands which cover <2% of the city area comprise over 50% of taxonomic diversity and over 90% of functional trait-level range of the vascular flora. Analysis of five ecological lands, which covered 1.8% of the whole city area confirmed our hypothesis. In ecological lands studied, we found 564 species of vascular plants, which is 52.9% of the whole city flora. These species belonged to 23 of 29 phytosociological classes represented in the whole city (73.9%). Functional trait distributions in ecological lands studied comprised from 95.8 to 100% of trait distributions in the flora of the whole city. Ecological lands seem to be a good way for conservation of biodiversity in urban areas. The legislative simplicity and low restrictiveness for both land management and recreational utility make ecological lands a much easier form of nature conservation which may be adapted to other cities for more efficient biodiversity management.  相似文献   

12.
13.
Vernal pools in the northeastern US are of conservation concern primarily because of their role as habitat for specialized pool-breeding amphibians, but their use by birds and mammals may also be of interest, especially from the perspective of the impact of urbanization. We describe camera-trapped wildlife (CTW) at 38 vernal pools along an urban development gradient in greater Bangor, Maine, USA. We detected 20 mammal and 39 bird taxa (29 contacted pool water; 39 detected at >1 site). Land cover type within 1000 m (%), within-pool vegetation (%), and amphibian egg mass numbers explained a substantial portion of the variance (40.8%) in CTW assemblage composition. Submerged vegetation within pools and cover by water and impervious surfaces within 1000 m of pools were key site characteristics defining assemblages. We scored the urban-affiliation of taxa and modeled the relationship between weighted assemblage scores for each site and impervious cover. Impervious cover within 1000 m of pools was positively (p?<?0.01) related to site urban-affiliation scores. Use probability for red fox increased and snowshoe hare decreased with impervious cover at 1000 m. These results indicate that within-pool vegetation and land cover types at 1000 m influenced bird and mammal assemblages that used study pools and greater impervious cover at 100 and 1000 m was correlated with a shift in assemblages from being dominated by urban-avoider to urban-adapted species. We encourage land use planners and managers to consider the influence of land use practices within 1000 m of vernal pools on birds and mammals, especially near amphibian breeding pools.  相似文献   

14.
Changes in riparian woody plant assemblages are anticipated in the southeastern United States due to increases in urbanization rates. Because riparian forests serve important roles in maintaining water quality and biodiversity, understanding how they respond to urbanization is crucial. The objective of this study was to examine forest structure and woody vegetation diversity indices of riparian communities in response to an urbanization gradient in West Georgia, USA. Measures of forest structure and diversity were compared to measures of urbanization and land cover. Although Liquidambar styracifluaand Quercus nigrawere dominant species in the forest stand and regeneration layer for all riparian communities, the invasive, non-native shrub Ligustrum sinense was the most dominant species observed in the regeneration layer for urban, developing, and agriculture communities. The proportion of non-native species in the forest stand and regeneration layer decreased and Shannon diversity of the regeneration layer increased with increasing distance from the urban center. Shifts in diversity indicate that anthropogenic disturbance may subdue the ability of diverse communities to resist non-native plant invasions.  相似文献   

15.
Urban environments are often associated with reduced biodiversity, presumably because they are typically more fragmented, warmer, and drier than nearby non-urban environments. However, urban landscapes offer significant complexity that have allowed some taxonomic groups to flourish. Understanding how urban-exploiting animals navigate this spatiotemporal heterogeneity is important given the continued global urban land expansion. Here, we examined the factors influencing resource-use in an urban community of ants, which represent a widespread and important taxon in urban ecosystems. In particular, we sought to integrate ants’ nutritional, thermal, and spatial niches to better understand how urban animals successfully access critical resources throughout their active season. Meteorological season (spring, summer, and fall) and/or species (n?=?9) influenced ants’ preferences for nutrition (ratio of ingested protein-to-carbohydrate ratio), as well as the temperature, type (impervious vs. non-impervious), and shade status (shaded vs. non-shaded) of surfaces used during activity. Our data also indicate links among habitat variables, as well as between nutritional preferences and habitat use. Together, our results suggest that species and seasonality influence ecological (combined nutritional, thermal, and spatial) niches in an urban community. We encourage future work in urban ecosystems that continues to integrate more features of the ecological niche, and to examine the outcomes of variation in niches (e.g., non-overlapping niches may explain both the persistence of some native animals and the success of invaders).  相似文献   

16.
Invasive species have been causing important and irreversible impacts to native species and communities of ecosystems. They distort ecosystem functions by degrading forest lands, wetlands, and agricultural habitats and replace the native vegetation and reduce biodiversity, forest productivity, and suitable wildlife habitat. To address disturbances caused by invasive species occurrence, further information is needed regarding the occurrence, extent, and dispersal of invasive species and how land use may increase the spread of these species. The objective of this study was to find the frequency and dominance of three invasive species common to riparian areas of east Alabama: Ligustrum sinense (Chinese privet), Elaeagnus pungens (silverthorn), and Triadica sebifera (Chinese tallow tree). Surveys of these species in riparian forests in and around Auburn, Alabama were conducted to show the relative extent of these shrubs and their relation to urban land use. It was expected to see the highest levels of invasive species in the city center with decreasing levels radiating outward into rural areas. Another objective was how urban land use may affect the presence-absence and prevalence of these non-native plant species within study sites. The results showed that around the city center and suburban lands, cover of both Chinese privet and silverthorn tended to increase. In contrast, Chinese tallow tree density percent cover showed an opposite trend with landscapes close to city center often having slightly less cover. This study shows that urban land use may be an important association with distribution of invasive plant species.  相似文献   

17.
Nestedness among species assemblages implies that sites of lower species richness are subsets of richer sites in a regional species pool. This nestedness is a reflection of a non-random process of species loss as a consequence of factors that promote the disaggregation of assemblages. The impoverishment of assemblage diversity is more often observed in fragmented landscapes. This non-random process has important implications for conservation. We recorded 95 species of anurans across 22 protected areas, of which 11 sites were in an urban matrix and 11 were in a non-urban matrix. We found that sites in the urban matrix had lower richness and high values of nestedness with no spatial autocorrelation among geographic distances and species composition. Thus, species were non-randomly distributed across the landscape and a nested pattern was documented from non-urban matrix sites to urban matrix sites. The impoverishment of assemblages toward the urban matrix sites may suggest that protected areas in an urban matrix are less suitable for anuran conservation than those in a non-urban matrix sites. Both the ecological revitalization of protected areas in urban matrix and protection of non-urban forested sites are needed for the conservation of Neotropical anurans.  相似文献   

18.
Urban forestry can benefit from improved knowledge of urbanization??s effects on tree canopy cover (TCC), a prominent urban forest indicator. This study examined changes in TCC over a long time frame, with respect to land cover (LC) changes, and across municipal boundaries. Specifically, I used air photos at 14 dates from 1937 to 2009 to develop an exceptionally long record of TCC change in Minnesota??s Twin Cities Metropolitan Area. During the study period overall TCC nearly doubled from 17% to 33% while the proportion urban land cover rose by 47%, highlighting the opportunity for substantial TCC gains following urbanization in previously agricultural landscapes, even in regions that were forested prior to European settlement. Results demonstrate that more intensely developed sites generally had lower TCC, and older urban sites had higher TCC. Modern TCC was not adequately characterized by linear distance along the urban?Crural gradient, but instead peaked near the center of the gradient where mature residential neighborhoods are prevalent. Compared to other land cover changes, urbanization events caused the highest rate of immediate TCC loss (9.6% of events), yet urban areas had the second highest TCC (>35%) in 2009, indicating that urban land gained TCC relatively efficiently following development. The results of this study provide new historical context for urban forest management across an urban?Crural gradient, and emphasize the need to consider ecological legacies and temporal lags following land cover changes when considering TCC goals in urban settings.  相似文献   

19.
Vegetation has gained importance in respective debates about climate change mitigation and adaptation in cities. Although recently developed remote sensing techniques provide necessary city-wide information, a sufficient and consistent city-wide information of relevant urban ecosystem services, such as carbon emissions offset, does not exist. This study uses city-wide, high-resolution, and remotely sensed data to derive individual tree species information and to estimate the above-ground carbon storage of urban forests in Berlin, Germany. The variance of tree biomass was estimated using allometric equations that contained different levels of detail regarding the tree species found in this study of 700 km2, which had a tree canopy of 213 km2. The average tree density was 65 trees/ha per unit of tree cover and a range from 10 to 40 trees/ha for densely urban land cover. City-wide estimates of the above-ground carbon storage ranged between 6.34 and 7.69 tC/ha per unit of land cover, depending on the level of tree species information used. Equations that did not use individually localized tree species information undervalued the total amount of urban forest carbon storage by up to 15 %. Equations using a generalized estimate of dominant tree species information provided rather precise city-wide carbon estimates. Concerning differences within a densely built area per unit of land cover approaches using individually localized tree species information prevented underestimation of mid-range carbon density areas (10–20 tC/ha), which were actually up to 8.4 % higher, and prevented overestimation of very low carbon density areas (0–5 tC/ha), which were actually up to 11.4 % lower. Park-like areas showed 10 to 30 tC/ha, whereas land cover of very high carbon density (40–80 tC/ha) mostly consisted of mixed peri-urban forest stands. Thus, this approach, which uses widely accessible and remotely sensed data, can help to improve the consistency of forest carbon estimates in cities.  相似文献   

20.
Nowadays, urban areas play a crucial role in biodiversity conservation and habitat protection despite the constant pressures on which these habitats are subjected. They may even host relatively new plant communities due to the peculiar ecosystem where they vegetate. The port of Trieste (NE Italy) is characterized by a mixed mosaic of intensely human impacted areas (where commercial activities are still ongoing) flanked by abandoned areas where vegetation persists or has spontaneously recovered. In this study, we sampled the whole port area through a stratified random sampling by placing multiscalar nested plots in four different habitats (strata) previously identified by photo-interpretation. Plant species richness and abundance were assessed in each plot. Each species was then classified as native or alien and patterns of species richness and complementarity were compared among habitats. Results show that there is a significant difference in species richness patterns among habitats, while observed patterns are likely to vary at different spatial scales. As expected, urban plots account for most of the alien species in the sampling, while wooded plots cope better with invasion, accounting for a lower alien/native ratio. These results highlight how habitat diversity enhances biodiversity in urban areas and how it could provide an effective filtering effect able to reduce the spread of alien species. In addition, we provide further evidence for the use of multi-scale approaches in order to study the complex relationships between spatial heterogeneity and plant species richness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号