首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natal habitat use by dragonflies was assessed on an urban to rural land-use gradient at a set of 21 wetlands, during two emergence seasons (2004, 2005). The wetlands were characterized for urbanization level by using the first factor from a principal components analysis combining chloride concentration in the wetland and percent forest in the surrounding buffer zone. Measurements of species diversity and its components (species richness and evenness) were analyzed and compared along the urbanization gradient, as were distributions of individual species. Dragonfly diversity, species richness, and evenness did not change along the urbanization gradient, so urban wetlands served as natal habitat for numerous dragonfly species. However, several individual species displayed strong relationships to the degree of urbanization, and most were more commonly found at urban sites and at sites with fish. In contrast, relatively rare species were generally found at the rural end of the gradient. These results suggest that urban wetlands can play important roles as dragonfly habitat and in dragonfly conservation efforts, but that conservation of rural wetlands is also important for some dragonfly species.  相似文献   

2.
Impacts of urbanization on biodiversity are commonly studied using urbanization gradients which provide a space-for-time substitution in estimating consequences of urban expansion. Rates of urbanization and human population growth are high in tropical countries of the developing world, which also hold most of the world’s biodiversity hot-spots, yet few studies have considered biodiversity trends along urban gradients in these regions. Bird communities across a gradient of nine sites in Uganda, from the city centre of Kampala to outlying rural locations, were studied over a six year period. These sites were ordered along an urbanization gradient using Principle Components Analysis based on habitat variables estimated at each site. Bird species richness showed a decrease from rural to urban sites, a trend especially evident in forest birds. There was no clear pattern in total abundance, total biomass or biomass per individual along the gradient. However, this latter result was heavily influenced by a colony of Marabou Storks at one site. When this species was omitted, there was evidence of a positive trend with urbanization, showing that as species richness decreased, the bird community was increasingly dominated by larger species with increasing urbanization, which were mainly scavengers able to exploit human refuse. These results provide further support for the negative impacts of urbanization on species richness, but also demonstrate trends in abundance and biomass are variable across different regions. In particular, the increasing dominance of larger species in urban areas may be relevant to certain geographic and/or socioeconomic contexts.  相似文献   

3.
The environmental factors affecting the spatial dynamics of bird communities in urban parks are well understood, but much less attention has been paid to the seasonal dynamics of bird communities. Since migrant and resident human commensal birds might have contrasting responses to environmental factors of urban parks, we expected different seasonal dynamics among parks. On the other hand, because bird species can have different habitat relationships throughout the year, we also expected different responses of bird richness to environmental variables between breeding and non-breeding seasons. Bird surveys were conducted in 14 small urban parks (1–4 Ha) of Mar del Plata city (Argentina) for one full annual cycle. Bird richness changed between seasons, but bird abundance remained constant. Bird community composition did not vary between seasons, but urban parks near the urban center, with the highest pedestrian traffic and isolation to other green areas had the least seasonal change of composition. During the breeding season, bird richness was negatively affected by the percentage cover of high buildings surrounding the immediate limits of parks, whereas during the non-breeding season bird richness was not related with any environmental variable. Bird composition variation among parks was affected by the distance to the urban center during both seasons. Results showed that urbanization promotes a seasonal homogenization of bird communities in urban parks, probably by affecting the presence of migrant species and promoting the temporal stability of human commensal species.  相似文献   

4.
The widely accepted consensus is that urbanization increases abundance but reduces species richness of animals. This assumption is the premise for empirical tests and theoretical explanations. We studied the association of urbanization with abundance and species richness of different animal taxa in 20 and 26 published articles reporting abundances and richness, respectively via meta-analysis. Because some articles had multiple estimates, we analyzed 40 and 58 estimates of abundance and richness, respectively. Contrary to conventional wisdom, the overall abundance of terrestrial animals was not higher in urban areas, but instead actually lower, while we failed to confirm the conventional thinking of lower species richness with urbanization. These findings cannot, however, be generalized across all cities and animal species, as conflicting differences were reported among geographical regions, animal taxa. Our results question the conventional wisdom that urbanization generally increases abundances while reducing species richness, and highlights the variability of urbanization effects on diversity among taxa and geographic regions.  相似文献   

5.
The influence of environmental parameters on epigeic beetle communities of forest fragments in an urbanization gradient was studied in Berlin. Eight deciduous forests along a rural to urban gradient were sampled with pitfall traps. Species richness did not decline across the rural to urban gradient. As expected, impervious surface cover as an indicator of urbanization correlated not only with habitat fragmentation and heat island effect but also with altered soil properties. The proportion of forest specialist staphylinid species decreased with increasing urbanization. The differences between staphylinid communities of neighboring forest fragments were enhanced in the most urban parts, probably due to increased habitat fragmentation. Furthermore, the loss of flightless species with increasing habitat isolation emphasized the influence of habitat fragmentation. The carabid communities revealed the urbanization effects not as clearly as the staphylinid communities, but both taxa revealed that direct anthropogenic habitat alteration, indicated by removal of decaying wood, favors open-habitat specialists. The extent of the urbanization influence seems to vary seasonally. Environmental parameters associated with urbanization explain the ordination of species communities in the winter better than in the summer. Heat island effect is suggested as an explanation for this difference.  相似文献   

6.
Forest bird communities across a gradient of urban development   总被引:1,自引:1,他引:0  
This study examined native bird communities in forest patches across a gradient of urbanization. We used field data and multivariate statistical techniques to examine the effects of landscape context, roads, traffic noise, and vegetation characteristics on bird community composition in the North Carolina Piedmont (U.S.A.). Landscape-level variables, particularly those related to urbanization, were most important in structuring forest bird communities. Specifically, we found that road density and amount of urban land cover were the best predictors of species composition. We found that urban and rural bird communities were quite distinct from each other. Rural communities had more long-distance migrants and forest interior species but species richness did not differ between the communities. Our results suggest some specific guidelines to target bird species of interest both inside and outside of urban areas. For example, if increasing numbers of migratory species is of primary concern, then conservation areas should be located outside of urban boundaries or in areas with low road density. However, if maximizing species richness is the focus, location of the conservation area may not be as important if the conservation area is surrounded by at least 50 m of forest habitat in all directions.  相似文献   

7.
The study aimed to assess if long-term exposure to urbanization changes the structure and composition of soil collembolan communities in urban green components (street lawns and park lawns) and in all urban green. Species diversity metrics, rarefaction, species richness estimators (Chao 1 and ACE) and multivariate analysis were used for the comparison of changes in community structure and diversity pattern over ca 30 years’ time span. Our results clearly demonstrate a shift, through time, in Collembola community composition and structure in an urban ecosystem and confirm that there is a linkage between long-term exposure to urbanization and changes in collembolan communities. Long-term urbanization led to erosion in species diversity and the formation of species-poor communities, species replacement, loss of specialized forms and promoted the invasion of exotic species. However, we show that the time span considered produced significant differences in diversity attribute values for the collembolan communities from street lawns and insignificant differences in park lawns, also we noted lack of significant differences in collembolan abundance across the two urban green components. The observed temporal changes in collembolan communities indicate that their response to disturbances in urban settings and selecting species is shaped by multiple processes. We conclude that more resistant collembolan communities were found over time in less stressed urban greening components such as park lawn soils compared to street lawn soils.  相似文献   

8.
We examined the understory species composition of 24 remnant forest stands along an urban-to-rural gradient in the metropolitan Milwaukee, Wisconsin region to determine the relationships between plant community composition, human disturbance, and contrasting types of land use along a gradient of urbanization. A significant difference was found in shrub species community composition among three contrasting land-use categories but no significant difference was found in herbaceous community composition. Significant differences in human activity existed among rural, urban, and urbanizing land-use categories, but this index of disturbance was not significantly correlated to gradients in species composition. All stands in this study had been subjected to various types of human activity and environmental disturbances in the past. Our data suggest that differences in the relative importance of understory species exist among stands but these differences may not be caused by the impacts of urbanization alone. Changes in the natural disturbance regime of this landscape, along with the impacts associated with urbanization, have led to an individualistic response in the compositional dynamics of forest stands. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Metropolitan areas are continually expanding, resulting in increasing impacts on ecosystems. Worldwide, riverine floodplains are among the most endangered landscapes and are often the focus of restoration activities. Amphibians and reptiles have valuable ecological roles in ecosystems, and promoting their abundance and diversity when rehabilitating riparian systems can contribute to reestablishing degraded ecosystem functions. We evaluated the herpetofauna community by measuring abundance, richness, diversity, and species-habitat relations along three reaches (wildland, urban rehabilitated, and urban disturbed reaches) varying in degree of urbanization and rehabilitation along the Salt River in central Arizona. We performed visual surveys for herpetofauna and quantified riparian microhabitat along eight transects per reach. The wildland reach had the greatest herpetofauna species richness and diversity, and had similar abundance compared to the urban rehabilitated reach. The urban disturbed reach had the lowest herpetofauna abundance and species richness, and had a similar diversity compared to the urban rehabilitated reach. Principal Component Analysis reduced 21 microhabitat variables to five factors which described habitat differences among reaches. Vegetation structural complexity, vegetation species richness, densities of Prosopis (mesquite), Salix (willow), Populus (cottonwood), and animal burrow density had a positive correlation with at least one herpetofauna community parameter, and had a positive correlation with abundance of at least one lizard species. Rehabilitation activities positively influenced herpetofauna abundance and species richness; whereas, urbanization negatively influenced herpetofauna diversity. Based on herpetofauna-microhabitat associations, we recommend urban natural resource managers increase vegetation structural complexity and woody debris to improve herpetofauna habitat when rehabilitating degraded riparian systems.  相似文献   

10.

The Neotropical region has been subjected to massive urbanization, which poses high risks for some global biodiversity hotspots and losses of ecosystem functions and services. In this study, we investigate how distance from large patches of native forests (source areas) and vegetation (green)/and infrastructure (gray) characteristics affect bird species richness and functional diversity in São Paulo megacity, southeastern Brazil. We analyzed the effects of source areas and green/gray characteristics on species richness and functional diversity (richness, evenness, and divergence) indices. We detected 231 bird species, and our data confirmed our predictions: (1) bird species richness in urbanized habitats was found to be (~?50–85%) lower than in source habitats; (2) species richness and trait composition significantly decreased as the distance from the source area increased, while functional richness was not affected by this metric; and (3) shrub and herbaceous covers and maximum height of trees were positively correlated with species richness and unique functional traits regarding habitat, diet, foraging and nesting strata and dispersal ability of birds in the forest-urban matrix. The number of buildings was negatively correlated with bird species richness and functional richness. Maximum height of buildings caused dramatic declines in functional evenness. Functional divergence was notably lower in sites with high shrub cover. Our study stresses the complexity of vegetation embedded in large Neotropical urban settlements and the need to maintain large protected areas surrounding megacities to mitigate the impacts of urbanization on birds.

  相似文献   

11.
The role of urban expansion on bee diversity is poorly understood, but it may play an important role in restructuring pollinator diversity observed in rural regions at the urban perimeter. We studied bee communities in two habitats essential for pollinators (residential gardens and semi-natural areas) at 42 sites situated at the edge of greater Montreal, Canada. Bee species richness, abundance and functional diversity all increased with urbanization in both habitat types, but gardens and semi-natural areas supported distinct bee communities with unique responses to urbanization in terms of species turnover. Compared to semi-natural sites, residential gardens supported bees that foraged from a greater number but a lower proportion of available plant species. Bees did not discriminate between exotic and indigenous plant species in either gardens or semi-natural sites and were attracted to flowers in either habitat irrespective of their origins. Protecting semi-natural ruderal areas and providing residential garden habitats for pollinators are both effective means of promoting regional bee diversity in urbanizing regions.  相似文献   

12.
During the last decades, urban consolidation has been developed to minimize spatial expansion of cities, yet very few studies investigated whether it would actually reduce some negative effects of urbanization on biodiversity. In this study, we compared the invertebrate assemblages associated with two distinct urban forms (compact vs. conventional), focusing on two arthropod taxa often used as bioindicators, and dominant in urban habitats: spiders and carabid beetles. The following parameters were estimated: assemblage composition, species richness, activity-density total, per species (excluding seldom-recorded species) and per size class. The field collection was performed in 2009 using pitfall traps randomly set in hedgerows within 6 sites (representing 251 traps). A total of 4,413 spiders belonging to 117 species and 2,077 adult carabid beetles belonging to 39 species were collected. We found few significant differences in carabid beetle and spider assemblages between the two urban forms. The species richness of both groups was independent from the neighborhood design. Only four species of carabid beetles and ten of spiders significantly reacted to the neighborhood design, and no difference was found among the two designs for all other species. Large carabid beetles were more abundant and small spiders less abundant in the new neighborhood design compared to the conventional one. For both carabid beetles and spiders, no difference in assemblage composition was found between neighborhood designs. We therefore conclude that urban consolidation, by permitting a higher human density with similar arthropod assemblages, could contribute to reduce biodiversity loss in cities.  相似文献   

13.
Urban development leads to changes in habitat structure and resource base. Bird communities are known to respond sharply to such changes. Our result from study of bird community along urbanization gradient around Kolkata metropolitan city clearly separated the urban bird community from the rural and rural 3 habitats in terms of species diversity and foraging groups. Rural and rural 3 sites had more number of rare species and higher percentage of unique species as compared to the urban habitats. Functional group analysis showed higher abundance of granivores in urban habitats and absence of insectivore and carnivorous species that were found in the rural and rural 3 habitats. The bird species assemblage along the gradient was significantly nested where bird species recorded in urban areas were subset of the species rich rural areas. There was no difference in individual counts between urban and rural habitats, therefore nullifying the hypothesis that rural areas are more species rich because of higher population size. Bird community in the urban areas was less even as compared to the rural areas due to the dominance of omnivorous guild. Bird diversity was negatively correlated to the density of house lots.  相似文献   

14.
The composition of the plant community in remnant patches of open grassy woodlands with an overstorey of Eucalyptus camaldulensis was investigated along an urban–rural gradient in Melbourne, Australia. The plant community showed very little difference between patches along the gradient, particularly in terms of the indigenous plant species. Average annual rainfall was the main factor contributing to patterns of indigenous plant species richness, while the level of urbanization in the surrounding landscape had a strong influence on the number of non-indigenous species recorded in the remnant plant community. Patterns of species richness were largely influenced by landscape-scale factors, while the percent cover of indigenous and non-indigenous plant species were more strongly influenced by patch scale factors. The findings of this study suggest that the plant communities investigated during this study appear to be relatively resilient to changes in the landscape associated with urbanization, but the plant community may be affected by predicted changes in average annual rainfall associated with climate change.  相似文献   

15.
Urbanization has been shown to affect forest stand characteristics in nearby natural areas. The purpose of this study was to examine forest structure in a naturally forested area, Forest Park in Portland, OR and adjacent forested land. Tree community structure was examined at 25 sites distributed along an urban-rural land use gradient. All trees in three quadrats per site were identified to species and the diameter at breast height was measured. ANOVA was used to examine differences in species richness and diversity, and tree density and importance value among four categorical areas. Tree species richness and diversity, and the density, diameter and importance values of shade-tolerant (later successional) species of trees decreased with urbanization. Sites nearer the city of Portland had significantly fewer shade tolerant saplings and young trees and were dominated by earlier successional species of trees as compared with sites at the far end of the study area. The forest structure in the city section of the park was very similar to that in the significantly younger middle section. The lack of young shade tolerant saplings and young trees appears to be the result of urbanization, although the mechanisms for such a loss are unknown at this time. Such a lack of recruitment may interfere with normal successional processes at more urban areas of the park.  相似文献   

16.

Urbanization usually reduces bat richness; however, the presence of green areas within cities and peripheral rural areas in arid ecosystems may provide microhabitats for some species. Light pollution is a major feature of urbanization, but its impact on bat behavior appears to be species-specific and previous studies have documented contrasting responses. Moreover, the effect of urbanization on bat species has been poorly studied in arid regions. We assessed the effect of artificial night light intensity (as a proxy of urbanization) on both bat occupancy and the acoustic space used (ASU) in an urbanization gradient in Peruvian central coast, based on passive acoustic recorders. We collected 26,169 recordings from 19 sites which resulted in 579 independent detections of 15 bat species. Variation in both ASU and species richness was best explained by artificial night light intensity. Species-specific effects of the artificial night light intensity based on a multi-species occupancy modeling showed that this covariate had a negative effect on occupancy for most of the bat species (12 species). ASU and both observed and posterior bat species richness were positively correlated, suggesting that ASU can be used as a proxy of bat richness. This study provides evidence that both bat richness and occupancy decrease with artificial light intensity; nevertheless, eight species used urban areas, similar to results found in other cities around the world.

  相似文献   

17.
Woody vegetation and canopy fragmentation along a forest-to-urban gradient   总被引:9,自引:5,他引:4  
To identify patterns that can be used to predict vegetation and landscape characteristics in urban environments, we surveyed the species composition and size of woody plants, as well as the landscape structure of forest canopies, along a forest-to-urban gradient near Oxford, Ohio, USA. The gradient included six sites of increasingly urban land-use: a preserve, a recreational area, a golf course, a residential subdivision, apartment complexes, and a business district. We recorded species identity and stem diameter for all woody plants greater than 3 cm diameter at breast height (DBH) to examine the distribution of individual species as well as overall community composition. We used digitized aerial photographs to compare the spatial characteristics of the forest canopy at each site. We found predictable patterns in species diversity (Shannon index), spatial heterogeneity in species composition (mean percent dissimilarity), and all measures of patch fragmentation (canopy cover and patch number and size). There were clear differences in tree density and total basal area between forested sites and developed sites, but there was little resolution among developed sites. Species richness and average DBH showed no clear pattern, suggesting that landscaping preference largely determined these values. We present a modified version of an intermediate heterogeneity model that can be used to predict diversity patterns in urban areas. We discuss probable mechanisms that led to these patterns and the potential implications for animal communities in urban environments.  相似文献   

18.
Urban growth is considered to be a major driver of environmental change. Urbanisation can affect urban biodiversity in different ways. So far, most studies focused on the impact of urbanisation on single taxa in one habitat type. In this study, we used data of species inventories and GIS-based landscape elements to examine the effects of habitat size and landscape composition on the species diversity of three taxonomic groups (vascular plants, Orthoptera and Lepidoptera) in meadows and ruderal sites in the urban region of Basel, Switzerland. We also related the responses of three species traits (body size, dispersal ability and food specialisation) to habitat size in Orthoptera and Lepidoptera. We found that species of the different taxonomic groups differed in their response to habitat size and landscape composition both in meadows and ruderal sites depending on the traits examined. The species richness of Orthoptera and Lepidoptera was positively related to meadow size but not to the size of ruderal sites, while the opposite was true for plants. For Lepidoptera in ruderal sites, the percentage cover of ruderal area in the closer surroundings was a better predictor of species richness than habitat size per se. To sustain high levels of urban biodiversity, we recommend that urban planners develop adequate management strategies to satisfy the different requirements of various taxonomic groups and to increase the quality of green sites surrounding the target habitat.  相似文献   

19.
Mediterranean-type ecosystems are one of the most affected environments by habitat loss and fragmentation due to urban development, however only few studies have evaluated the effects of urbanization on the biodiversity of remnant fragments in these ecosystems. This study aims to evaluate the effects of urban development over small mammal assemblages inhabiting isolated forest fragments of an urban area of Chilean Mediterranean zone. We compared abundance and richness of small mammal assemblages of six remnant fragments within an urban matrix, and six fragments similar in area and habitat characteristics with those of urban area, but surrounded by a rural matrix. We found that small mammal assemblages differ considerably among fragments types (urban vs rural), with lack of endemic species from urban fragments and with high proportion of introduced rodents in urban fragments. Furthermore abundance of small mammals was higher in rural than in urban fragments. In urban areas small mammal abundance and richness were not correlated with any of the explanatory variables assessed (woody cover, flora heterogeneity, fragment area, perimeter/area ratio). However in rural fragments small mammal richness was negatively correlated with flora heterogeneity and the abundance of small mammals was positively correlated with perimeter/area ratio. These results reveal important differences within the effects of fragmentation over small mammal assemblages among the two types of fragments assessed. Our findings suggest that in forest fragments isolated by urbanization, larger areas with good quality habitats are not sufficient to maintain native small mammal population.  相似文献   

20.
Activity and species-specific responses of insectivorous bats in different urban-forest conditions provides a general perspective on the adaptability and vulnerability of bat species towards urbanization intensity. Here we evaluated species richness and activity patterns of aerial insectivorous bats across an urbanized landscape in the highlands of Chiapas, in Mexico. Acoustic monitoring of echolocation calls was conducted for 27 nights over a period of four months. Species richness and relative activity of insectivorous bats were estimated in a landscape with different conditions of urbanization intensity: urban areas, non-urban and forest areas. We identified a total of 14 bat species and three phonotypes. Bat species richness and relative activity was similar (X2 = 0.568, gl = 2, p > 0.05), but species composition differed among conditions. We observed a significant higher occurrence of Bauerus dubiaquercus, Eptesicus brasiliensis and Myotis californicus in forest sites. Urban sites presented higher occurrence of Molossus rufus and phonotype Molossidae 2, while non-urban sites presented a higher occurrence of Eptesicus furinalis and phonotype Molossidae 2. We were able to identify bat species according to their relative activity in relation todifferent landscape conditions. Species of the Molossidae family presented the highest activity in urban sites, which was positively affected by the number of streetlights, while species of the Vespertilionidae presented the highest activity in forest sites, which was positively related totree density. While urbanization tends to diminish native biodiversity and alter faunal communities, our results show a similar richness and relative activity of aerial insectivorous bats along the urban ecosystem. The effect of urbanization intensity becomes more apparent in species-specific bat activity; the response of species towards particular habitat conditions depends on local habitat quality and characteristics (i.e., presence of streetlights, vegetation cover and tree density).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号