首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
McKone has recently proposed an innovative two-layer model for dermal uptake of organic chemicals from a soil matrix that explicitly includes variables for properties of the chemical, the soil, the skin, and the exposure. In this note, we investigate the joint time- and loading-dependencies implicit in the model by using MATHEMATICA to find and plot a closed-form function for the uptake fraction for six aromatic hydrocarbons.  相似文献   

2.
Estimates of dermal dose from exposures to toxic chemicals are typically derived using models that assume instantaneous establishment of steady-state dermal mass flux. However, dermal absorption theory indicates that this assumption is invalid for short-term exposures to volatile organic chemicals (VOCs). A generalized distributed parameter physiologically-based pharmacokinetic model (DP-PBPK), which describes unsteady state dermal mass flux via a partial differential equation (Fickian diffusion), has been developed for inhalation and dermal absorption of VOCs. In the present study, the DP-PBPK model has been parameterized for chloroform, and compared with two simpler PBPK models of chloroform. The latter are lumped parameter models, employing ordinary differential equations, that do not account for the dermal absorption time lag associated with the accumulation of permeant chemical in tissue represented by permeability coefficients. All three models were evaluated by comparing simulated post-exposure exhaled breath concentration profiles with measured concentrations following environmental chloroform exposures. The DP-PBPK model predicted a time-lag in the exhaled breath concentration profile, consistent with the experimental data. The DP-PBPK model also predicted significant volatilization of chloroform, for a simulated dermal exposure scenario. The end-exposure dermal dose predicted by the DP-PBPK model is similar to that predicted by the EPA recommended method for short-term exposures, and is significantly greater than the end-exposure dose predicted by the lumped parameter models. However, the net dermal dose predicted by the DP-PBPK model is substantially less than that predicted by the EPA method, due to the post-exposure volatilization predicted by the DP-PBPK model. Moreover, the net dermal dose of chloroform predicted by all three models was nearly the same, even though the lumped parameter models did not predict substantial volatilization.  相似文献   

3.
On incidental dermal exposure to chemicals in water, a key exposure factor is the amount of water adhering to skin. Although soil adherence factors have been developed for risk assessment, measurements of water adherence on human skin have not been described. In the Environmental Protection Agency's (EPA's) dermal risk assessment guidance, dermal dose from environmental exposures is based upon the flux rate across the skin, which assumes that an unlimited amount of chemical is available for absorption. This assumption is applicable to certain exposure scenarios such as swimming and bathing. However, exposures to contaminated water frequently involve scenarios where the available chemical is limited by the amount of water adhering to the skin, for example, during accidental splashes. We conducted studies in human volunteers to investigate water adherence per unit area of skin after brief contact with water. In two sets of experiments, either water was applied with a micropipette to 10‐cm2 areas of the lower leg, foot, and hand, or the foot and hand were briefly immersed in water. In males, using a micropipette, water adherence ranged from 1.93 (foot) to 7.13 μL/cm2 (lower leg). In females, it ranged from 1.10 (lower leg) to 4.83 μL/cm2 (hand). Hand and foot immersion resulted in relatively higher values of 6.89 and 5.17 μL/cm2, respectively, in males, and 5.40 and 6.39 μL/cm2 in females. Water adherence was affected by amount of body hair and type of exposure. Water adherence factors can be used to calculate the applied dose per unit area for exposures involving intermittent water contact.  相似文献   

4.
A new mathematical model for permeability of chemicals in aqueous vehicle through skin is presented. The rationale for this model is to represent diffusion by its fundamental molecular mechanism, i.e., random thermal motion. Diffusion is modeled as a two-dimensional random walk through the biphasic (lipid and corneocyte) stratum corneum (SC). This approach permits calculations of diffusion phenomena in a morphologically realistic SC structure. Two concepts are key in the application of the model to the prediction of steady-state skin permeability coefficients: "effective diffusivity" and "effective path length," meaning the diffusivity and thickness of a homogeneous membrane having identical permeation properties as the stratum corneum. Algebraic expressions for these two variables are developed as functions of the molecular weight and octanol-water partition coefficient of the diffusing substance. Combining these with expressions for membrane-vehicle partition coefficient and permeability of the aqueous epidermis enables the calculation of steady-state skin permeability coefficients. The resulting four-parameter algebraic model was regressed against the "Flynn data base" with excellent results (R2 = 0.84: SE = 0.0076; F = 154; N = 94). The model provides insight into the contributions of stratum corneum diffusivity and effective path lengths to overall skin permeability and may prove useful in the prediction of non-steady-state diffusion phenomena.  相似文献   

5.
In order to predict the exhaled breath concentration of chloroform in individuals exposed to chloroform while showering, an existing physiologically based pharmacokinetic (PB-PK) model was modified to include a multicompartment, PB-PK model for the skin and a completely mixed shower exposure model. The PB-PK model of the skin included the stratum corneum as the principal resistance to absorption and a viable epidermis which is in dynamic equilibrium with the skin microcirculation. This model was calibrated with measured exhaled breath concentrations of chloroform in individuals exposed while showering with and without dermal absorption. The calibration effort indicated that the expected value of skin-blood partitioning coefficient would be 1.2 when the degree of transfer of chloroform from shower water into shower air was 61%. The stratum corneum permeability coefficient for chloroform was estimated to be within the range of 0.16-0.36 cm/hr and the expected value was 0.2 cm/hr. The estimated ratio of the dermally and inhaled absorbed doses ranged between 0.6 and 2.2 and the expected value was 0.75. These results indicate that for the purposes of risk assessment for dermal exposure to chloroform, a simple steady-state model can be used to predict the degree of dermal absorption and that a reasonable value of skin permeability coefficient for chloroform used in this model would be 0.2 cm/hr. Further research should be conducted to compare the elimination of chloroform via exhaled breath when different exposure routes are being compared. The model results from this study suggest that multiple measurements of exhaled breath concentrations after exposure may be necessary when making comparisons of breath concentrations that involve different exposure routes.  相似文献   

6.
Dermal Uptake of Organic Chemicals from a Soil Matrix   总被引:2,自引:0,他引:2  
Uptake of chemicals from soil on human skin is considered. Based on a review of literature on the structure of human skin, the processes by which chemicals pass through this boundary, and experiments that reveal the rate and magnitude of this transport process; a two-layer model is presented for estimating how chemical uptake through the stratum corneum depends on chemical properties, skin properties, soil properties and exposure conditions. The model is applied to two limiting scenarios--(1) continuous deposition and removal of soil on the skin surface and (2) a one-time deposition of soil onto the skin surface. The fraction of soil-bound chemical that passes through the stratum corneum is dependent on the skin-soil layer thickness; the dimensionless Henry's law constant, Kh and the octanol-water partition coefficient, Kow of the soil-bound chemical. The nature of this dependence is discussed.  相似文献   

7.
The skin is a route of exposure that needs to be considered when conducting a risk assessment. It is necessary to identify the potential for dermal penetration by a chemical as well as to determine the overall importance of the dermal route of exposure as compared with inhalation or oral routes of exposure. The physical state of the chemical, vapor or liquid, the concentration, neat or dilute, and the vehicle, lipid or aqueous, is also important. Dermal risk is related to the product of the amounts of penetration and toxicity. Toxicity involves local effects on the skin itself and the potential for systemic effects. Dermal penetration is described in large part by the permeability constant. When permeability constants are not known, partition coefficients can be used to estimate a chemical's potential to permeate the skin. With these concepts in mind, a tiered approach is proposed for dermal risk assessment. A key first step is the determination of a skin-to-air or skin-to-medium partition coefficient to estimate a potential for dermal absorption. Building a physiologically-based pharmacokinetic (PBPK) model is another step in the tiered approach and is useful prior to classical in vivo toxicity tests. A PBPK model can be used to determine a permeability constant for a chemical as well as to show the distribution of the chemical systemically. A detailed understanding of species differences in the structure and function of the skin and how they relate to differences in penetration rates is necessary in order to extrapolate animal data from PBPK models to the human. A study is in progress to examine anatomical differences for four species.  相似文献   

8.
The systemic uptake of chloroform from dilute aqueous solutions into live hairless rats under conditions simulating dermal environmental exposure was studied. Whole blood was sampled during a 30-min immersion of an animal within water containing a known concentration of chloroform and then for 5.5 h following its removal from the bath. The amount of chloroform systemically absorbed was determined by comparing the AUCs of the blood concentration vs. time plots from dermal exposure to that obtained after IV infusion (for a period of 30 min) of an aqueous solution containing a known amount of chloroform (positive control). Although dermal data implied two-compartment disposition characteristics, IV infusion data fit best to a three-compartment disposition. Linear pharmacokinetics was observed both by IV administration and percutaneous absorption at the dose levels studied. Chloroform was detected in the rat blood as early as 4 min following exposure. Our findings suggest that about 10.2 mg of chloroform was systemically absorbed after dermal exposure of a rat to an aqueous solution of 0.44 mg/ml. This amount is substantially higher than the predictions of mathematical risk-models put forth by some investigators. However, when expressed as the "effective" permeability coefficient ( K peff), close agreement was noticed between our value and those estimated by others using physiologically based pharmacokinetic (PBPK) models. Also, in terms of K peff, reasonable agreement existed between our and another investigator's past estimates of uptake based on depletion of bath level of chloroform and the actual uptake measured in our current experiments. The estimated onset of systemic entry seen here is entirely consistent with our estimate of how long it takes to establish the diffusion gradient across the stratum comeum based on tape stripping.  相似文献   

9.
Quantitative approaches to assessing exposure to, and associated risk from, benzene in mineral spirits solvent (MSS), used widely in parts washing and degreasing operations, have focused primarily on the respiratory pathway. The dermal contribution to total benzene uptake from such operations remains uncertain because measuring in vivo experimental dermal uptake of this volatile human carcinogen is difficult. Unprotected dermal uptake involves simultaneous sustained immersion events and transient splash/wipe events, each yielding residues subject to evaporation as well as dermal uptake. A two‐process dermal exposure framework to assess dermal uptake to normal and damaged skin was applied to estimate potential daily dermal benzene dose (Dskin) to workers who used historical or current formulations of recycled MSS in manual parts washers. Measures of evaporation and absorption of MSS dermally applied to human subjects were modeled to estimate in vivo dermal uptake of benzene in MSS. Uncertainty and interindividual variability in Dskin was characterized by Monte Carlo simulation, conditioned on uncertainty and/or variability estimated for each model input. Dermal exposures are estimated to average 33% of total (inhalation + dermal) benzene parts washing dose, with approximately equal predicted portions of dermal dose due to splash/wipe and to continuous contact with MSS. The estimated median (95th percentile) dermal and total daily benzene doses from parts washing are: 0.0069 (0.024) and 0.025 (0.18) mg/day using current, and 0.027 (0.085) and 0.098 (0.69) mg/day using historical, MSS solvents, respectively.  相似文献   

10.
We employ the intake fraction (iF) as an effective tool for expressing the source-to-intake relationship for pollutant emissions in life cycle analysis (LCA) or comparative risk assessment. Intake fraction is the fraction of chemical mass emitted into the environment that eventually passes into a member of the population through inhalation, ingestion, or dermal exposure. To date, this concept has been primarily applied to pollutants whose primary route of exposure is inhalation. Here we extend the use of iF to multimedia pollutants with multiple exposure pathways. We use a level III multimedia model to calculate iF for TCDD and compare the result to one calculated from measured levels of dioxin toxic equivalents in the environment. We calculate iF for emissions to air and surface water for 308 chemicals. We correlate the primary exposure route with the magnitudes of the octanol-water partition coefficient, Kow, and of the air-water partitioning coefficient (dimensionless Henry constant), Kaw. This results in value ranges of Kow and Kaw where the chemical exposure route can be classified with limited input data requirements as primarily inhalation, primarily ingestion, or multipathway. For the inhalation and ingestion dominant pollutants, we also define empirical relationships based on chemical properties for quantifying the intake fraction. The empirical relationships facilitate rapid evaluation of many chemicals in terms of the intake. By defining a theoretical upper limit for iF in a multimedia environment we find that iF calculations provide insight into the multimedia model algorithms and help identify unusual patterns of exposure and questionable exposure model results.  相似文献   

11.
An environmental assessment of amine oxides has been conducted under the OECD SIDS High Production Volume (HPV) Program via the Global International Council of Chemical Associations (ICCA) Amine Oxides Consortium. Amine oxides are primarily used in conjunction with surfactants in cleaning and personal care products. Given the lack of persistence or bioaccumulation, and the low likelihood of these chemicals partitioning to soil, the focus of the environmental assessment is on the aquatic environment. In the United States, the E-FAST model is used to estimate effluent concentrations in the United States from manufacturing facilities and from municipal facilities resulting from consumer product uses. Reasonable worst-case ratios of predicted environmental concentration (PEC) to predicted no effect concentration (PNEC) range from 0.04 to 0.003, demonstrating that these chemicals are a low risk to the environment.  相似文献   

12.
Assessments of aggregate exposure to pesticides and other surface contamination in residential environments are often driven by assumptions about dermal contacts. Accurately predicting cumulative doses from realistic skin contact scenarios requires characterization of exposure scenarios, skin surface loading and unloading rates, and contaminant movement through the epidermis. In this article we (1) develop and test a finite-difference model of contaminant transport through the epidermis; (2) develop archetypal exposure scenarios based on behavioral data to estimate characteristic loading and unloading rates; and (3) quantify 24-hour accumulation below the epidermis by applying a Monte Carlo simulation of these archetypal exposure scenarios. The numerical model, called Transient Transport through the epiDERMis (TTDERM), allows us to account for variable exposure times and time between exposures, temporal and spatial variations in skin and compound properties, and uncertainty in model parameters. Using TTDERM we investigate the use of a macro-activity parameter (cumulative contact time) for predicting daily (24-hour) integrated uptake of pesticides during complex exposure scenarios. For characteristic child behaviors and hand loading and unloading rates, we find that a power law represents the relationship between cumulative contact time and cumulative mass transport through the skin. With almost no loss of reliability, this simple relationship can be used in place of the more complex micro-activity simulations that require activity data on one- to five-minute intervals. The methods developed in this study can be used to guide dermal exposure model refinements and exposure measurement study design.  相似文献   

13.
Average rates of total dermal uptake (Kup) from short‐term (e.g., bathing) contact with dilute aqueous organic chemicals (DAOCs) are typically estimated from steady‐state in vitro diffusion‐cell measures of chemical permeability (Kp) through skin into receptor solution. Widely used (“PCR‐vitro”) methods estimate Kup by applying diffusion theory to increase Kp predictions made by a physico‐chemical regression (PCR) model that was fit to a large set of Kp measures. Here, Kup predictions for 18 DAOCs made by three PCR‐vitro models (EPA, NIOSH, and MH) were compared to previous in vivo measures obtained by methods unlikely to underestimate Kup. A new PCR model fit to all 18 measures is accurate to within approximately threefold (r = 0.91, p < 10?5), but the PCR‐vitro predictions (r > 0.63) all tend to underestimate the Kup measures by mean factors (UF, and p value for testing UF = 1) of 10 (EPA, p < 10?6), 11 (NIOSH, p < 10?8), and 6.2 (MH, p = 0.018). For all three PCR‐vitro models, log(UF) correlates negatively with molecular weight (r2 = 0.31 to 0.84, p = 0.017 to < 10?6) but not with log(vapor pressure) as an additional predictor (p > 0.05), so vapor pressure appears not to explain the significant in vivo/PCR‐vitro discrepancy. Until this discrepancy is explained, careful in vivo measures of Kup should be obtained for more chemicals, the expanded in vivo database should be compared to in vitro‐based predictions, and in vivo data should be considered in assessing aqueous dermal exposure and its uncertainty.  相似文献   

14.
Estimating Consumer Exposure to PFOS and PFOA   总被引:4,自引:0,他引:4  
Perfluorinated compounds have been used for more than 50 years as process aids, surfactants, and for surface protection. This study is a comprehensive assessment of consumer exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) from a variety of environmental and product-related sources. To identify relevant pathways leading to consumer exposure to PFOS and PFOA a scenario-based approach has been applied. Scenarios represent realistic situations where age- and gender-specific exposure occurs in the everyday life of consumers. We find that North American and European consumers are likely to experience ubiquitous and long-term uptake doses of PFOS and PFOA in the range of 3 to 220 ng per kg body weight per day (ng/kgbw/day) and 1 to 130 ng/kgbw/day, respectively. The greatest portion of the chronic exposure to PFOS and PFOA is likely to result from the intake of contaminated foods, including drinking water. Consumer products cause a minor portion of the consumer exposure to PFOS and PFOA. Of these, it is mainly impregnation sprays, treated carpets in homes, and coated food contact materials that may lead to consumer exposure to PFOS and PFOA. Children tend to experience higher total uptake doses (on a body weight basis) than teenagers and adults because of higher relative uptake via food consumption and hand-to-mouth transfer of chemical from treated carpets and ingestion of dust. The uptake estimates based on scenarios are within the range of values derived from blood serum data by applying a one-compartment pharmacokinetic model.  相似文献   

15.
A two-step methodology is described to make a health-based determination for the bathing and showering use of the water from a private well contaminated with volatile organic chemicals. The chemical perchloroethylene (PERC) is utilized to illustrate the approach. First, a chemical-specific exposure model is used to predict the concentration of PERC in the shower air, shower water, and in the air above the bathtub. Second, a physiologically based pharmacokinetic (PBPK) model is used to predict the concentration of PERC delivered to the target tissue, the brain, since the focus is on neurological endpoints. The simulation exercise includes concurrent dermal and inhalation routes of exposure. A reference target tissue level (RTTL) in the brain is estimated using the PBPK model. A hazard index based on this benchmark guideline is used to make a regulatory determination for bathing and showering use of the contaminated water.  相似文献   

16.
Estimates of soil adherence to skin are required for assessment of dermal exposures to contaminants in soils. Previously available estimates depend heavily on indirect measurements and/or artificial activities and reflect sampling of hands only. Results are presented here from direct measurement of soil loading on skin surfaces of volunteers before and after normal occupational and recreational activities that might reasonably be expected to lead to soil contact. Skin surfaces assayed included hands, forearms, lower legs, faces and/or feet. Observed hand loadings vary over five orders of magnitude (roughly from 10–3 to 102 mg/cm2) and are dependent upon type of activity. Hand loadings within the current default range of 0.2 to 1.0 mg/cm2 were produced by activities providing opportunity for relatively vigorous soil contact (rugby, farming). Loadings less than 0.2 mg/cm2 were found on hands following activities presenting less opportunity for direct soil contact (soccer, professional grounds maintenance) and on other body parts under many conditions. The default range does not, however, represent a worst case. Children playing in mud on the shore of a lake generated geometric mean loadings well in excess of 1 mg/cm2 on hands, arms, legs, and feet. Post-activity average loadings on hands were typically higher than average loadings on other body parts resulting from the same activity. Hand data from limited activities cannot, however, be used to conservatively predict loadings that might occur on other body surfaces without regard to activity since non-hand loadings attributable to higher contact activities exceeded hand loadings resulting from lower contact activities. Differences between pre- and post-activity loadings also demonstrate that dermal contact with soil is episodic. Typical background (pre-activity) geometric mean loadings appear to be on the order of 10-2 mg/cm2 or less. Because exposures are activity dependent, quantification of dermal exposure to soil will remain inadequate until data describing relevant human behavior (type of activity, frequency, duration including interval before bathing, clothing worn, etc.) are generated.  相似文献   

17.
Probabilistic risk assessments are enjoying increasing popularity as a tool to characterize the health hazards associated with exposure to chemicals in the environment. Because probabilistic analyses provide much more information to the risk manager than standard “point” risk estimates, this approach has generally been heralded as one which could significantly improve the conduct of health risk assessments. The primary obstacles to replacing point estimates with probabilistic techniques include a general lack of familiarity with the approach and a lack of regulatory policy and guidance. This paper discusses some of the advantages and disadvantages of the point estimate vs. probabilistic approach. Three case studies are presented which contrast and compare the results of each. The first addresses the risks associated with household exposure to volatile chemicals in tapwater. The second evaluates airborne dioxin emissions which can enter the food-chain. The third illustrates how to derive health-based cleanup levels for dioxin in soil. It is shown that, based on the results of Monte Carlo analyses of probability density functions (PDFs), the point estimate approach required by most regulatory agencies will nearly always overpredict the risk for the 95th percentile person by a factor of up to 5. When the assessment requires consideration of 10 or more exposure variables, the point estimate approach will often predict risks representative of the 99.9th percentile person rather than the 50th or 95th percentile person. This paper recommends a number of data distributions for various exposure variables that we believe are now sufficiently well understood to be used with confidence in most exposure assessments. A list of exposure variables that may require additional research before adequate data distributions can be developed are also discussed.  相似文献   

18.
POSSM, the PCB On-Site Spill Model, is a contaminant transport model developed to predict environmental concentrations associated with a chemical spill. The model predicts daily changes in chemical concentrations on a spill site (e.g., in soil and on vegetation) and losses of chemical due to volatilization, surface runoff/soil erosion, and leaching to groundwater. Spill areas consisting of soil/vegetation and/or an impervious surface (e.g., asphalt and concrete) can be analyzed, as can different spill cleanup practices. POSSM is used to analyze exposure levels associated with a hypothetical capacitor spill. While the model was developed for PCB spills, it is generally applicable to a number of organic compounds.  相似文献   

19.
The volume and variety of manufactured chemicals is increasing, although little is known about the risks associated with the frequency and extent of human exposure to most chemicals. The EPA and the recent signing of the Lautenberg Act have both signaled the need for high-throughput methods to characterize and screen chemicals based on exposure potential, such that more comprehensive toxicity research can be informed. Prior work of Mitchell et al. using multicriteria decision analysis tools to prioritize chemicals for further research is enhanced here, resulting in a high-level chemical prioritization tool for risk-based screening. Reliable exposure information is a key gap in currently available engineering analytics to support predictive environmental and health risk assessments. An elicitation with 32 experts informed relative prioritization of risks from chemical properties and human use factors, and the values for each chemical associated with each metric were approximated with data from EPA's CP_CAT database. Three different versions of the model were evaluated using distinct weight profiles, resulting in three different ranked chemical prioritizations with only a small degree of variation across weight profiles. Future work will aim to include greater input from human factors experts and better define qualitative metrics.  相似文献   

20.
Physical property values are used in environmental risk assessments to estimate media and risk-based concentrations. Recently, however, considerable variability has been reported with such values. To evaluate potential variability in physical parameter values supporting a variety of regulatory programs, eight data sources were chosen for evaluation, and chemicals appearing in at least four sources were selected. There were 755 chemicals chosen. In addition, chemicals in seven environmentally important subgroups were also identified for evaluation. Nine parameters were selected for analysis--molecular weight (MolWt), melting point (MeltPt), boiling point (BoilPt), vapor pressure (VP), water solubility (AqSOL), Henry's law constant (HLC), octanol-water partition coefficient (Kow), and diffusion coefficients in air (Dair) and water (Dwater). Results show that while 71% of constituents had equal MolWts across data sources, <3% of the constituents had equivalent parameter values across data sources for AqSOL, VP, or HLC. Considerable dissimilarity between certain sources was also observed. Furthermore, measures of dispersion showed considerable variation in data sets for Kow, VP, AqSOL, and HLC compared to measures for MolWt, MeltPt, BoilPt, or Dwater. The magnitude of the observed variability was also noteworthy. For example, the 95th percentile ratio of maximum/minimum parameter values ranged from 1.0 for MolWt to well over 1.0 x 10(6) for VP and HLC. Risk and exposure metrics also varied by similar magnitudes. Results with environmentally important subgroups were similar. These results show that there is considerable variability in physical parameter values from standard sources, and that the observed variability could affect potential risk estimates and perhaps risk management decisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号