共查询到20条相似文献,搜索用时 15 毫秒
1.
Fuchun Huang 《Australian & New Zealand Journal of Statistics》2003,45(2):217-228
The lasso procedure is an estimator‐shrinkage and variable selection method. This paper shows that there always exists an interval of tuning parameter values such that the corresponding mean squared prediction error for the lasso estimator is smaller than for the ordinary least squares estimator. For an estimator satisfying some condition such as unbiasedness, the paper defines the corresponding generalized lasso estimator. Its mean squared prediction error is shown to be smaller than that of the estimator for values of the tuning parameter in some interval. This implies that all unbiased estimators are not admissible. Simulation results for five models support the theoretical results. 相似文献
2.
In this paper, the notion of the general linear estimator and its modified version are introduced using the singular value decomposition theorem in the linear regression model y=X β+e to improve some classical linear estimators. The optimal selections of the biasing parameters involved are theoretically given under the prediction error sum of squares criterion. A numerical example and a simulation study are finally conducted to illustrate the superiority of the proposed estimators. 相似文献
3.
J. S. Chawla 《Statistical Papers》1988,29(1):227-230
The necessary and sufficient condition is obtained such that ridge estimator is better than the least squares estimator relative
to the matrix mean square error. 相似文献
4.
Equivalent conditions are derived for the equality of GLSE (generalized least squares estimator) and partially GLSE (PGLSE), the latter introduced by Amemiya (1983). By adopting a more general approach the ordinary least squares estimator (OLSE) can shown to be a special PGLSE. Furthcrmore, linearly restricted estimators proposed by Balestra (1983) are investigated in this context. To facilitate the comparison of estimators extensive use of oblique and orthogonal projectors is made. 相似文献
5.
Improvement of the Liu estimator in linear regression model 总被引:2,自引:0,他引:2
In the presence of stochastic prior information, in addition to the sample, Theil and Goldberger (1961) introduced a Mixed
Estimator
for the parameter vector β in the standard multiple linear regression model (T,Xβ,σ2
I). Recently, the Liu estimator which is an alternative biased estimator for β has been proposed by Liu (1993).
In this paper we introduce another new Liu type biased estimator called Stochastic restricted Liu estimator
for β, and discuss its efficiency. The necessary and sufficient conditions for mean squared error matrix of the Stochastic restricted Liu estimator
to exceed the mean squared error matrix of the mixed estimator
will be derived for the two cases in which the parametric restrictions are correct and are not correct. In particular we
show that this new biased estimator is superior in the mean squared error matrix sense to both the Mixed estimator
and to the biased estimator introduced by Liu (1993). 相似文献
6.
The necessary and sufficient conditions for the inadmissibility of the ridge regression is discussed under two different criteria, namely, average loss and Pitman nearness. Although the two criteria are very different, same conclusions are obtained. The loss functions considered in this article are th likelihood loss function and the Mahalanobis loss function. The two loss functions are motivated from the point of view of classification of two normal populations. Under the Mahalanobis loss it is demonstrated that the ridge regression is always inadmissible as long as the errors are assumed to be symmetrically distributed about the origin. 相似文献
7.
This article considers the notion of the non-diagonal-type estimator (NDTE) under the prediction error sum of squares (PRESS) criterion. First, the optimal NDTE in the PRESS sense is derived theoretically and applied to the cosmetics sales data. Second, we make a further study to extend the NDTE to the general case of the covariance matrix of the model and then give a Bayesian explanation for this extension. Third, two remarks concerned with some potential shortcomings of the NDTE are presented and an alternative solution is provided and illustrated by means of simulations. 相似文献
8.
Gregory C. Reinsel 《统计学通讯:理论与方法》2013,42(5):639-650
We Consider the generalized multivariate linear model and assume the covariance matrix of the p x 1 vector of responses on a given individual can be represented in the general linear structure form described by Anderson (1973). The effects of the use of estimates of the parameters of the covariance matrix on the generalized least squares estimator of the regression coefficients and on the prediction of a portion of a future vector, when only the first portion of the vector has been observed, are investigated. Approximations are derived for the covariance matrix of the generalized least squares estimator and for the mean square error matrix of the usual predictor, for the practical case where estimated parameters are used. 相似文献
9.
Nityananda Sarkar 《统计学通讯:理论与方法》2013,42(7):1987-2000
It is well-known in the literature on multicollinearity that one of the major consequences of multicollinearity on the ordinary least squares estimator is that the estimator produces large sampling variances, which in turn might inappropriately lead to exclusion of otherwise significant coefficients from the model. To circumvent this problem, two accepted estimation procedures which are often suggested are the restricted least squares method and the ridge regression method. While the former leads to a reduction in the sampling variance of the estimator, the later ensures a smaller mean square error value for the estimator. In this paper we have proposed a new estimator which is based on a criterion that combines the ideas underlying these two estimators. The standard properties of this new estimator have been studied in the paper. It has also been shown that this estimator is superior to both the restricted least squares as well as the ordinary ridge regression estimators by the criterion of mean sauare error of the estimator of the regression coefficients when the restrictions are indeed correct. The conditions for superiority of this estimator over the other two have also been derived for the situation when the restrictions are not correct. 相似文献
10.
A number of score statistics are derived for a heterogeneous spatial Poisson process which has a composite intensity. The intensity consists of a 'background' process which is estimated from a control point process by kernel density estimation. The parametric form of the composite intensity yields score tests for particular spatial effects. A numerical example concerning respiratory cancer mortality is given. 相似文献
11.
This paper gives necessary and sufficient conditions for the ridge estimator applied to an error misspecified regression model to dominate the generalised least squares estimator. It is shown that the requirements for mean square error dominance are more stringent than in the correct specification case. 相似文献
12.
Methods for linear regression with multivariate response variables are well described in statistical literature. In this study we conduct a theoretical evaluation of the expected squared prediction error in bivariate linear regression where one of the response variables contains missing data. We make the assumption of known covariance structure for the error terms. On this basis, we evaluate three well-known estimators: standard ordinary least squares, generalized least squares, and a James–Stein inspired estimator. Theoretical risk functions are worked out for all three estimators to evaluate under which circumstances it is advantageous to take the error covariance structure into account. 相似文献
13.
M. Revan Özkale 《Journal of applied statistics》2014,41(5):998-1027
This paper deals with the problem of multicollinearity in a multiple linear regression model with linear equality restrictions. The restricted two parameter estimator which was proposed in case of multicollinearity satisfies the restrictions. The performance of the restricted two parameter estimator over the restricted least squares (RLS) estimator and the ordinary least squares (OLS) estimator is examined under the mean square error (MSE) matrix criterion when the restrictions are correct and not correct. The necessary and sufficient conditions for the restricted ridge regression, restricted Liu and restricted shrunken estimators, which are the special cases of the restricted two parameter estimator, to have a smaller MSE matrix than the RLS and the OLS estimators are derived when the restrictions hold true and do not hold true. Theoretical results are illustrated with numerical examples based on Webster, Gunst and Mason data and Gorman and Toman data. We conduct a final demonstration of the performance of the estimators by running a Monte Carlo simulation which shows that when the variance of the error term and the correlation between the explanatory variables are large, the restricted two parameter estimator performs better than the RLS estimator and the OLS estimator under the configurations examined. 相似文献
14.
This paper dwells on the choice between the ordinary least squares and the estimated generalized least squares estimators when the presence of heteroskedasticity is suspected. Since the estimated generalized least squares estimator does not dominate the ordinary least squares estimator completely over the whole parameter space, it is of interest to the researcher to know in advance whether the degree of severity of heteroskedasticity is such that OLS estimator outperforms the estimated generalized least squares (or 2SAE). Casting the problem in the non-spherical error mold and exploiting the principle underlying the Bayesian pretest estimator, an intuitive non-mathematical procedure is proposed to serve as an aid to the researcher in deciding when to use either the ordinary least squares (OLS) or the estimated generalized least squares (2SAE) estimators. 相似文献
15.
J. Fredrik Lindström 《Journal of applied statistics》2009,36(12):1369-1384
When VAR models are used to predict future outcomes, the forecast error can be substantial. Through imposition of restrictions on the off-diagonal elements of the parameter matrix, however, the information in the process may be condensed to the marginal processes. In particular, if the cross-autocorrelations in the system are small and only a small sample is available, then such a restriction may reduce the forecast mean squared error considerably.
In this paper, we propose three different techniques to decide whether to use the restricted or unrestricted model, i.e. the full VAR(1) model or only marginal AR(1) models. In a Monte Carlo simulation study, all three proposed tests have been found to behave quite differently depending on the parameter setting. One of the proposed tests stands out, however, as the preferred one and is shown to outperform other estimators for a wide range of parameter settings. 相似文献
16.
Liqun Wang 《Revue canadienne de statistique》2007,35(2):233-248
Mixed effects models and Berkson measurement error models are widely used. They share features which the author uses to develop a unified estimation framework. He deals with models in which the random effects (or measurement errors) have a general parametric distribution, whereas the random regression coefficients (or unobserved predictor variables) and error terms have nonparametric distributions. He proposes a second-order least squares estimator and a simulation-based estimator based on the first two moments of the conditional response variable given the observed covariates. He shows that both estimators are consistent and asymptotically normally distributed under fairly general conditions. The author also reports Monte Carlo simulation studies showing that the proposed estimators perform satisfactorily for relatively small sample sizes. Compared to the likelihood approach, the proposed methods are computationally feasible and do not rely on the normality assumption for random effects or other variables in the model. 相似文献
17.
Estimation and Prediction in the Presence of Spatial Confounding for Spatial Linear Models 下载免费PDF全文
Garritt L. Page Yajun Liu Zhuoqiong He Donchu Sun 《Scandinavian Journal of Statistics》2017,44(3):780-797
In studies that produce data with spatial structure, it is common that covariates of interest vary spatially in addition to the error. Because of this, the error and covariate are often correlated. When this occurs, it is difficult to distinguish the covariate effect from residual spatial variation. In an i.i.d. normal error setting, it is well known that this type of correlation produces biased coefficient estimates, but predictions remain unbiased. In a spatial setting, recent studies have shown that coefficient estimates remain biased, but spatial prediction has not been addressed. The purpose of this paper is to provide a more detailed study of coefficient estimation from spatial models when covariate and error are correlated and then begin a formal study regarding spatial prediction. This is carried out by investigating properties of the generalized least squares estimator and the best linear unbiased predictor when a spatial random effect and a covariate are jointly modelled. Under this setup, we demonstrate that the mean squared prediction error is possibly reduced when covariate and error are correlated. 相似文献
18.
Shih-Huang Chan 《统计学通讯:理论与方法》2013,42(4):1199-1209
Asymptotic distributions of the maximum likelihood estimators of the regression coefficients and knot points for the polynomial spline regression models with unknown knots and AR(1) errors have been derived by Chan (1989). Chan showed that under some mild conditions the maximum likelihood estimators, after suitable standardization, asymptotically follow normal distributions as n diverges to infinity. For the calculations of the maximum likelihood estimators, iterative methods must be applied. But this is not easy to implement for the model considered. In this paper, we suggested an alternative method to compute the estimates of the regression parameters and knots. It is shown that the estimates obtained by this method are asymptotically equivalent to the maximum likelihood estimates considered by Chan. 相似文献
19.
In this paper we will consider a linear regression model with the sequence of error terms following an autoregressive stationary process. The statistical properties of the maximum likelihood and least squares estimators of the regression parameters will be summarized. Then, it will be proved that, for some typical cases of the design matrix, both methods produce asymptotically equivalent estimators. These estimators are also asymptotically efficient. Such cases include the most commonly used models to describe trend and seasonality like polynomial trends, dummy variables and trigonometric polynomials. Further, a very convenient asymptotic formula for the covariance matrix will be derived. It will be illustrated through a brief simulation study that, for the simple linear trend model, the result applies even for sample sizes as small as 20. 相似文献
20.
We derive the optimal regression function (i.e., the best approximation in the L2 sense) when the vector of covariates has a random dimension. Furthermore, we consider applications of these results to problems in statistical regression and classification with missing covariates. It will be seen, perhaps surprisingly, that the correct regression function for the case with missing covariates can sometimes perform better than the usual regression function corresponding to the case with no missing covariates. This is because even if some of the covariates are missing, an indicator random variable δ, which is always observable, and is equal to 1 if there are no missing values (and 0 otherwise), may have far more information and predictive power about the response variable Y than the missing covariates do. We also propose kernel-based procedures for estimating the correct regression function nonparametrically. As an alternative estimation procedure, we also consider the least-squares method. 相似文献