首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The qualitative and quantitative evaluation of risk in developmental toxicology has been discussed in several recent publications.(1–3) A number of issues still are to be resolved in this area. The qualitative evaluation and interpretation of end points in developmental toxicology depends on an understanding of the biological events leading to the end points observed, the relationships among end points, and their relationship to dose and to maternal toxicity. The interpretation of these end points is also affected by the statistical power of the experiments used for detecting the various end points observed. The quantitative risk assessment attempts to estimate human risk for developmental toxicity as a function of dose. The current approach is to apply safety (uncertainty) factors to die no observed effect level (NOEL). An alternative presented and discussed here is to model the experimental data and apply a safety factor to an estimated risk level to achieve an “acceptable” level of risk. In cases where the dose-response curves upward, this approach provides a conservative estimate of risk. This procedure does not preclude the existence of a threshold dose. More research is needed to develop appropriate dose-response models that can provide better estimates for low-dose extrapolation of developmental effects.  相似文献   

2.
The dose‐response analyses of cancer and noncancer health effects of aldrin and dieldrin were evaluated using current methodology, including benchmark dose analysis and the current U.S. Environmental Protection Agency (U.S. EPA) guidance on body weight scaling and uncertainty factors. A literature review was performed to determine the most appropriate adverse effect endpoints. Using current methodology and information, the estimated reference dose values were 0.0001 and 0.00008 mg/kg‐day for aldrin and dieldrin, respectively. The estimated cancer slope factors for aldrin and dieldrin were 3.4 and 7.0 (mg/kg‐day)?1, respectively (i.e., about 5‐ and 2.3‐fold lower risk than the 1987 U.S. EPA assessments). Because aldrin and dieldrin are no longer used as pesticides in the United States, they are presumed to be a low priority for additional review by the U.S. EPA. However, because they are persistent and still detected in environmental samples, quantitative risk assessments based on the best available methods are required. Recent epidemiologic studies do not demonstrate a causal association between aldrin and dieldrin and human cancer risk. The proposed reevaluations suggest that these two compounds pose a lower human health risk than currently reported by the U.S. EPA.  相似文献   

3.
Standard experimental designs for conducting developmental toxicity studies typically include three- or four-dose levels in addition to a control group. Some researchers have suggested that designs with more exposure groups would improve dose-response characterization and risk estimation. Such proposals have not, however, been supported by the results of simulation studies, which instead back the use of fewer dose levels. This discrepancy is partly due to using a known dose–response pattern to generate data, making model choice obvious. While the carcinogenicity literature has explored implications of different study designs, little attention has been given to the role of design in developmental toxicity risk assessment (or noncancer toxicology in general). In this research, we explore the implications of various experimental designs for developmental toxicity by resampling data from a large study of 2,4,5-trichlorophenoxyacetic acid in mice. We compare the properties of benchmark dose (BMD) estimation for different design strategies by randomly selecting animals within particular dose groups from the entire 2,4,5-T database of over 77,000 birth outcomes to create smaller "pseudo-studies" that are representative of standard bioassay sample sizes. Our results show that experimental designs which include more dose levels have advantages in terms of risk characterization and estimation.  相似文献   

4.
Methylmercury (Me-Hg) is widely distributed through freshwater and saltwater food chains and human consumption of fish and shellfish has lead to widespread exposure. Both the U.S. EPA Reference Dose (0.3 μg/kg/day) and the FAO/WHO Permissible Tolerable Weekly Intake (3.3 μg/kg/week) are currently based on the prevention of paraesthesia in adult and older children. However, Me-Hg exposure in utero is known to result in a range of developmental neurologic effects including clinical CNS symptoms and delayed onset of walking. Based on a critical review of developmental toxicity data from human and animal studies, it is concluded that current guidelines for the prevention of paraesthesia are not adequate to address developmental effects. A dose of 0.07 μ/kg/day is suggested as the best estimate of a potential reference dose for developmental effects. Data on nationwide fish consumption rates and Me-Hg levels in fish/seafood weighted by proportion of the catch intended for human consumption are analyzed in a Monte Carlo simulation to derive a probability distribution of background Me-Hg exposure. While various uncertainties in the toxicologic and exposure data limit the precision with which health risk can be estimated, this analysis suggests that at current levels of Me-Hg exposure, a significant fraction of women of childbearing age have exposures above this suggested reference dose.  相似文献   

5.
This paper describes the U.S. Environmental Protection Agency's assessment of potential health risks associated with the possible widespread use of a manganese (Mn)-based fuel additive, methylcyclopentadienyl manganese tricarbonyl (MMT). This assessment was significant in several respects and may be instructive in identifying certain methodological issues of general relevance to risk assessment. A major feature of the inhalation health risk assessment was the derivation of Mn inhalation reference concentration (RfC) estimates using various statistical approaches, including benchmark dose and Bayesian analyses. The exposure assessment component used data from the Particle Total Exposure Assessment Methodology (PTEAM) study and other sources to estimate personal exposure levels of particulate Mn attributable to the permitted use of MMT in leaded gasoline in Riverside, CA, at the time of the PTEAM study; on this basis it was then possible to predict a distribution of possible future exposure levels associated with the use of MMT in all unleaded gasoline. Qualitative as well as quantitative aspects of the risk characterization are summarized, along with inherent uncertainties due to data limitations.  相似文献   

6.
Hormetic effects have been observed at low exposure levels based on the dose-response pattern of data from developmental toxicity studies. This indicates that there might actually be a reduced risk of exhibiting toxic effects at low exposure levels. Hormesis implies the existence of a threshold dose level and there are dose-response models that include parameters that account for the threshold. We propose a function that introduces a parameter to account for hormesis. This function is a subset of the set of all functions that could represent a hormetic dose-response relationship at low exposure levels to toxic agents. We characterize the overall dose-response relationship with a piecewise function that consists of a hormetic u-shape curve at low dose levels and a logistic curve at high dose levels. We apply our model to a data set from an experiment conducted at the National Toxicology Program (NTP). We also use the beta-binomial distribution to model the litter response data. It can be seen by observing the structure of these data that current experimental designs for developmental studies employ a limited number of dose groups. These designs may not be satisfactory when the goal is to illustrate the existence of hormesis. In particular, increasing the number of low-level doses improves the power for detecting hormetic effects. Therefore, we also provide the results of simulations that were done to characterize the power of current designs in detecting hormesis and to demonstrate how this power can be improved upon by altering these designs with the addition of only a few low exposure levels.  相似文献   

7.
8.
Environmental and public health organizations, including the World Health Organization (WHO) and the U.S. Environmental Protection Agency (USEPA), develop human health reference values (HHRV) that set “safe” levels of exposure to noncarcinogens. Here, we systematically analyze chronic HHRVs from four organizations: USEPA, Health Canada, RIVM (the Netherlands), and the U.S. Agency for Toxic Substances and Disease Registry. This study is an extension of our earlier work and both closely examines the choices made in setting HHRVs and presents a quantitative method for identifying the primary factors influencing HHRV agreement or disagreement.(1) We evaluated 171 organizational comparisons, developing a quantitative method for identifying the factors to which HHRV agreement (that is, when both organizations considering the same data set the identical HHRV values) is most sensitive. To conduct this analysis, a Bayesian belief network was built using expert judgment, including the specific science policy choices analysis made in the context of setting an HHRV. Based on a sensitivity of findings analysis, HHRV agreement is most sensitive to the point of departure value, followed by the total uncertainty factor (UF), critical study, critical effect, animal model, and point of departure approach. This analysis also considered the specific impacts of individual UFs, with the database UF and the subchronic‐to‐chronic UF being identified as primary factors impacting the total UF differences observed across organizations. The sensitivity of findings analysis results were strengthened and confirmed by frequency analyses evaluating which choices most often disagreed when the HHRV and the total UF disagreed.  相似文献   

9.
Recent advances in risk assessment have led to the development of joint dose-response models to describe prenatal death and fetal malformation rates in developmental toxicity experiments. These models can be used to estimate the effective dose corresponding to a 5% excess risk for both these toxicological endpoints, as well as for overall toxicity. In this article, we develop optimal experimental designs for the estimation of the effective dose for developmental toxicity using joint Weibull dose-response models for prenatal death and fetal malformation. Based on an extended series of developmental studies, near-optimal designs for prenatal death, malformation, and overall toxicity were found to involve three dose groups: an unexposed control group, a high dose equal to the maximum tolerated dose, and a low dose above or comparable to the effective dose. The effect on the optimal designs of changing the number of implants and the degree of intra-litter correlation is also investigated. Although the optimal design has only three dose groups in most cases, practical considerations involving model lack of fit and estimation of the shape of the dose-response curve suggest that, in practice, suboptimal designs with more than three doses will often be preferred.  相似文献   

10.
D. Krewski  Y. Zhu 《Risk analysis》1994,14(4):613-627
Reproductive and developmental anomalies induced by toxic chemicals may be identified using laboratory experiments with small mammalian species such as rats, mice, and rabbits. In this paper, dose-response models for correlated multinomial data arising in studies of developmental toxicity are discussed. These models provide a joint characterization of dose-response relationships for both embryolethality and teratogenicity. Generalized estimating equations are used for model fitting, incorporating overdispersion relative to the multinomial variation due to correlation among littermates. The fitted dose-response models are used to estimate benchmark doses in a series of experiments conducted by the U.S. National Toxicology Program. Joint analysis of prenatal death and fetal malformation using an extended Dirichlet-trinomial covariance function to characterize overdispersion appears to have statistical and computational advantages over separate analysis of these two end points. Benchmark doses based on overall toxicity are below the minimum of those for prenatal death and fetal malformation and may, thus, be preferred for risk assessment purposes.  相似文献   

11.
《Risk analysis》2018,38(5):1052-1069
This study investigated whether, in the absence of chronic noncancer toxicity data, short‐term noncancer toxicity data can be used to predict chronic toxicity effect levels by focusing on the dose–response relationship instead of a critical effect. Data from National Toxicology Program (NTP) technical reports have been extracted and modeled using the Environmental Protection Agency's Benchmark Dose Software. Best‐fit, minimum benchmark dose (BMD), and benchmark dose lower limits (BMDLs) have been modeled for all NTP pathologist identified significant nonneoplastic lesions, final mean body weight, and mean organ weight of 41 chemicals tested by NTP between 2000 and 2012. Models were then developed at the chemical level using orthogonal regression techniques to predict chronic (two years) noncancer health effect levels using the results of the short‐term (three months) toxicity data. The findings indicate that short‐term animal studies may reasonably provide a quantitative estimate of a chronic BMD or BMDL. This can allow for faster development of human health toxicity values for risk assessment for chemicals that lack chronic toxicity data.  相似文献   

12.
The benchmark dose (BMD)4 approach is emerging as replacement to determination of the No Observed Adverse Effect Level (NOAEL) in noncancer risk assessment. This possibility raises the issue as to whether current study designs for endpoints such as developmental toxicity, optimized for detecting pair wise comparisons, could be improved for the purpose of calculating BMDs. In this paper, we examine various aspects of study design (number of dose groups, dose spacing, dose placement, and sample size per dose group) on BMDs for two endpoints of developmental toxicity (the incidence of abnormalities and of reduced fetal weight). Design performance was judged by the mean-squared error (reflective of the variance and bias) of the maximum likelihood estimate (MLE) from the log-logistic model of the 5% added risk level (the likely target risk for a benchmark calculation), as well as by the length of its 95% confidence interval (the lower value of which is the BMD). We found that of the designs evaluated, the best results were obtained when two dose levels had response rates above the background level, one of which was near the ED05, were present. This situation is more likely to occur with more, rather than fewer dose levels per experiment. In this instance, there was virtually no advantage in increasing the sample size from 10 to 20 litters per dose group. If neither of the two dose groups with response rates above the background level was near the ED05, satisfactory results were also obtained, but the BMDs tended to be more conservative (i.e., lower). If only one dose level with a response rate above the background level was present, and it was near the ED05, reasonable results for the MLE and BMD were obtained, but here we observed benefits of larger dose group sizes. The poorest results were obtained when only a single group with an elevated response rate was present, and the response rate was much greater than the ED05. The results indicate that while the benchmark dose approach is readily applicable to the standard study designs and generally observed dose-responses in developmental assays, some minor design modifications would increase the accuracy and precision of the BMD.  相似文献   

13.
《Risk analysis》2018,38(6):1183-1201
In assessing environmental health risks, the risk characterization step synthesizes information gathered in evaluating exposures to stressors together with dose–response relationships, characteristics of the exposed population, and external environmental conditions. This article summarizes key steps of a cumulative risk assessment (CRA) followed by a discussion of considerations for characterizing cumulative risks. Cumulative risk characterizations differ considerably from single chemical‐ or single source‐based risk characterization. CRAs typically focus on a specific population instead of a pollutant or pollutant source and should include an evaluation of all relevant sources contributing to the exposures in the population and other factors that influence dose–response relationships. Second, CRAs may include influential environmental and population‐specific conditions, involving multiple chemical and nonchemical stressors. Third, a CRA could examine multiple health effects, reflecting joint toxicity and the potential for toxicological interactions. Fourth, the complexities often necessitate simplifying methods, including judgment‐based and semi‐quantitative indices that collapse disparate data into numerical scores. Fifth, because of the higher dimensionality and potentially large number of interactions, information needed to quantify risk is typically incomplete, necessitating an uncertainty analysis. Three approaches that could be used for characterizing risks in a CRA are presented: the multiroute hazard index, stressor grouping by exposure and toxicity, and indices for screening multiple factors and conditions. Other key roles of the risk characterization in CRAs are also described, mainly the translational aspect of including a characterization summary for lay readers (in addition to the technical analysis), and placing the results in the context of the likely risk‐based decisions.  相似文献   

14.
Quantitative Risk Assessment for Developmental Neurotoxic Effects   总被引:4,自引:0,他引:4  
Developmental neurotoxicity concerns the adverse health effects of exogenous agents acting on neurodevelopment. Because human brain development is a delicate process involving many cellular events, the developing fetus is rather susceptible to compounds that can alter the structure and function of the brain. Today, there is clear evidence that early exposure to many neurotoxicants can severely damage the developing nervous system. Although in recent years, there has been much attention given to model development and risk assessment procedures for developmental toxicants, the area of developmental neurotoxicity has been largely ignored. Here, we consider the problem of risk estimation for developmental neurotoxicants from animal bioassay data. Since most responses from developmental neurotoxicity experiments are nonquantal in nature, an adverse health effect will be defined as a response that occurs with very small probability in unexposed animals. Using a two-stage hierarchical normal dose-response model, upper confidence limits on the excess risk due to a given level of added exposure are derived. Equivalently, the model is used to obtain lower confidence limits on dose for a small negligible level of risk. Our method is based on the asymptotic distribution of the likelihood ratio statistic (cf. Crump, 1995). An example is used to provide further illustration.  相似文献   

15.
Dale Hattis 《Risk analysis》1990,10(2):303-316
Neither experimental animal exposures nor real-life human exposures are delivered at a constant level over a full lifetime. Although there are strong theoretical reasons why all pharmacokinetic processes must "go linear" at the limit of low dose rates, fluctuations in dose rate may produce nonlinearities that either increase or decrease actual risks relative to what would be expected for constant lifetime exposure. This paper discusses quantitative theory and specific examples for a number of processes that can be expected to give rise to pharmacokinetic nonlinearities at high dose rates–including transport processes (e.g., renal tubular secretion), activating and detoxifying metabolism, DNA repair, and enhancement of cell replication following gross toxicity in target tissues. At the extreme, full saturation of a detoxification or DNA repair process has the potential to create as much as a dose2 dependence of risk on dose delivered in a single burst, and if more than one detoxification step becomes fully saturated, this can be compounded. Effects via changes in cell replication rates, which appear likely to be largely responsible for the steep upward turning curve of formaldehyde carcinogenesis in rats, can be even more profound over a relatively narrow range of dosage. General suggestions are made for experimental methods to detect nonlinearities arising from the various sources in premarket screening programs.  相似文献   

16.
The U.S. Environmental Protection Agency's (EPA) Integrated Risk Information System (IRIS) database, the authoritative source of U.S. risk assessment toxicity factors, currently lacks an oral reference dose (RfD) for copper. In the absence of such a value, various health-based reference values for copper are available for use in risk assessment. We summarize the scientific bases and differences in assumptions among key reference values for ingested copper to guide selection of appropriate values for risk assessment. A comprehensive review of the scientific literature best supports the oral RfD of 0.04 mg/kg body weight/day derived by EPA from their Drinking Water Action Level. This value is based on acute gastrointestinal effects but is further supported by broader analysis of copper deficiency and toxicity.  相似文献   

17.
Characterizing all possible chemical mixtures in drinking water is a potentially overwhelming project, and the task of assessing each mixture's net toxicity even more daunting. We propose that analyzing occurrence information on mixtures in drinking water may help to narrow the priorities and inform the approaches taken by researchers in mixture toxicology. To illustrate the utility of environmental data for refining the mixtures problem, we use a recent compilation of national ground-water-quality data to examine proposed U.S. Environmental Protection Agency (EPA) and Agency for Toxic Substances and Disease Registry (ATSDR) models of noncancer mixture toxicity. We use data on the occurrence of binary and ternary mixtures of arsenic, cadmium, and manganese to parameterize an additive model and compute hazard index scores for each drinking-water source in the data set. We also use partially parameterized interaction models to perform a bounding analysis estimating the interaction potential of several binary and ternary mixtures for which the toxicological literature is limited. From these results, we estimate a relative value of additional toxicological information for each mixture. For example, we find that according to the U.S. EPA's interaction model, the levels of arsenic and cadmium found in U.S. drinking water are unlikely to have synergistic cardiovascular effects, but the same mixture's potential for synergistic neurological effects merits further study. Similar analysis could in future be used to prioritize toxicological studies based on their potential to reduce scientific and regulatory uncertainty. Environmental data may also provide a means to explore the implications of alternative risk models for the toxicity and interaction of complex mixtures.  相似文献   

18.
Rhomberg  Lorenz R.  Wolff  Scott K. 《Risk analysis》1998,18(6):741-753
The scaling of administered doses to achieve equal degrees of toxic effect in different species has been relatively poorly examined for noncancer toxicity, either empirically or theoretically. We investigate empirical patterns in the correspondence of single oral dose LD, values across several mammalian species for a large number of chemicals based on data reported in the RTECSQ database maintained by the National Institute for Occupational Safety and Health. We find a good correspondence of LD, values across species when the dose levels are expressed in terms of mgadministered per kg of body mass. Our findings contrast with earlier analyses that support scaling doses by the 3/4-power of body mass to achieve equal subacute toxicity of antineoplastic agents. We suggest that, especially for severe toxicity, single- and repeated-dosing regimes may have different cross-species scaling properties, as they may depend on standing levels of defenses and rate of regeneration of defenses, respectively.  相似文献   

19.
20.
A review of epidemiology literature revealed that only studies conducted in Africa and Asia included data adequate to permit quantitative assessment of the dose-response relationship between aflatoxin exposure levels and liver cancer rates. Although these studies were judged adequate, their direct use to predict risks in U.S. populations may be questioned since hepatitis B virus (HBV) infections are far more common in the studied areas than in the U.S. Recent research indicates that, if aflatoxin contributes to the development of liver cancer, it almost always does so in the presence of HBV infection. The African/Asian data do not permit us to estimate the potency of aflatoxin in the absence of HBV. Recognizing this, these data can only be used to establish upper limits for the predicted excess lifetime risk for liver cancer in the U.S. When used in conjunction with aflatoxin exposure estimates for the Southeast U.S., these data predict a liver cancer rate, due to aflatoxin alone, far above that actually observed due to all causes; this provides an indication of the conservatism of this approach. Data from the Southeast U.S. may be used to estimate an excess lifetime risk for liver cancer of 2.17 x 10(-6) x (aflatoxin intake, ng/kg/day).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号